Step |
Hyp |
Ref |
Expression |
1 |
|
mptexgf.a |
⊢ Ⅎ 𝑥 𝐴 |
2 |
|
funmpt |
⊢ Fun ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
3 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
4 |
3
|
dmmpt |
⊢ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V } |
5 |
|
trud |
⊢ ( 𝐵 ∈ V → ⊤ ) |
6 |
5
|
rgenw |
⊢ ∀ 𝑥 ∈ 𝐴 ( 𝐵 ∈ V → ⊤ ) |
7 |
|
ss2rab |
⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V } ⊆ { 𝑥 ∈ 𝐴 ∣ ⊤ } ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐵 ∈ V → ⊤ ) ) |
8 |
6 7
|
mpbir |
⊢ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V } ⊆ { 𝑥 ∈ 𝐴 ∣ ⊤ } |
9 |
1
|
rabtru |
⊢ { 𝑥 ∈ 𝐴 ∣ ⊤ } = 𝐴 |
10 |
8 9
|
sseqtri |
⊢ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V } ⊆ 𝐴 |
11 |
4 10
|
eqsstri |
⊢ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ 𝐴 |
12 |
|
ssexg |
⊢ ( ( dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉 ) → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ V ) |
13 |
11 12
|
mpan |
⊢ ( 𝐴 ∈ 𝑉 → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ V ) |
14 |
|
funex |
⊢ ( ( Fun ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∧ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ V ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ V ) |
15 |
2 13 14
|
sylancr |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ V ) |