Metamath Proof Explorer


Theorem mptfcl

Description: Interpret range of a maps-to notation as a constraint on the definition. (Contributed by Stefan O'Rear, 10-Oct-2014)

Ref Expression
Assertion mptfcl ( ( 𝑡𝐴𝐵 ) : 𝐴𝐶 → ( 𝑡𝐴𝐵𝐶 ) )

Proof

Step Hyp Ref Expression
1 eqid ( 𝑡𝐴𝐵 ) = ( 𝑡𝐴𝐵 )
2 1 fmpt ( ∀ 𝑡𝐴 𝐵𝐶 ↔ ( 𝑡𝐴𝐵 ) : 𝐴𝐶 )
3 rsp ( ∀ 𝑡𝐴 𝐵𝐶 → ( 𝑡𝐴𝐵𝐶 ) )
4 2 3 sylbir ( ( 𝑡𝐴𝐵 ) : 𝐴𝐶 → ( 𝑡𝐴𝐵𝐶 ) )