Metamath Proof Explorer


Theorem mptfi

Description: A finite mapping set is finite. (Contributed by Mario Carneiro, 31-Aug-2015)

Ref Expression
Assertion mptfi ( 𝐴 ∈ Fin → ( 𝑥𝐴𝐵 ) ∈ Fin )

Proof

Step Hyp Ref Expression
1 funmpt Fun ( 𝑥𝐴𝐵 )
2 funfn ( Fun ( 𝑥𝐴𝐵 ) ↔ ( 𝑥𝐴𝐵 ) Fn dom ( 𝑥𝐴𝐵 ) )
3 1 2 mpbi ( 𝑥𝐴𝐵 ) Fn dom ( 𝑥𝐴𝐵 )
4 eqid ( 𝑥𝐴𝐵 ) = ( 𝑥𝐴𝐵 )
5 4 dmmptss dom ( 𝑥𝐴𝐵 ) ⊆ 𝐴
6 ssfi ( ( 𝐴 ∈ Fin ∧ dom ( 𝑥𝐴𝐵 ) ⊆ 𝐴 ) → dom ( 𝑥𝐴𝐵 ) ∈ Fin )
7 5 6 mpan2 ( 𝐴 ∈ Fin → dom ( 𝑥𝐴𝐵 ) ∈ Fin )
8 fnfi ( ( ( 𝑥𝐴𝐵 ) Fn dom ( 𝑥𝐴𝐵 ) ∧ dom ( 𝑥𝐴𝐵 ) ∈ Fin ) → ( 𝑥𝐴𝐵 ) ∈ Fin )
9 3 7 8 sylancr ( 𝐴 ∈ Fin → ( 𝑥𝐴𝐵 ) ∈ Fin )