Step |
Hyp |
Ref |
Expression |
1 |
|
mptiffisupp.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ if ( 𝑥 ∈ 𝐵 , 𝐶 , 𝑍 ) ) |
2 |
|
mptiffisupp.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) |
3 |
|
mptiffisupp.b |
⊢ ( 𝜑 → 𝐵 ∈ Fin ) |
4 |
|
mptiffisupp.c |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐶 ∈ 𝑉 ) |
5 |
|
mptiffisupp.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝑊 ) |
6 |
2
|
mptexd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 𝑥 ∈ 𝐵 , 𝐶 , 𝑍 ) ) ∈ V ) |
7 |
1 6
|
eqeltrid |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
8 |
1
|
funmpt2 |
⊢ Fun 𝐹 |
9 |
8
|
a1i |
⊢ ( 𝜑 → Fun 𝐹 ) |
10 |
|
partfun |
⊢ ( 𝑥 ∈ 𝐴 ↦ if ( 𝑥 ∈ 𝐵 , 𝐶 , 𝑍 ) ) = ( ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ↦ 𝐶 ) ∪ ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↦ 𝑍 ) ) |
11 |
1 10
|
eqtri |
⊢ 𝐹 = ( ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ↦ 𝐶 ) ∪ ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↦ 𝑍 ) ) |
12 |
11
|
oveq1i |
⊢ ( 𝐹 supp 𝑍 ) = ( ( ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ↦ 𝐶 ) ∪ ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↦ 𝑍 ) ) supp 𝑍 ) |
13 |
|
inss2 |
⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 |
14 |
13
|
a1i |
⊢ ( 𝜑 → ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 ) |
15 |
14
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ) → 𝑥 ∈ 𝐵 ) |
16 |
15 4
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ) → 𝐶 ∈ 𝑉 ) |
17 |
16
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ↦ 𝐶 ) : ( 𝐴 ∩ 𝐵 ) ⟶ 𝑉 ) |
18 |
|
incom |
⊢ ( 𝐵 ∩ 𝐴 ) = ( 𝐴 ∩ 𝐵 ) |
19 |
|
infi |
⊢ ( 𝐵 ∈ Fin → ( 𝐵 ∩ 𝐴 ) ∈ Fin ) |
20 |
3 19
|
syl |
⊢ ( 𝜑 → ( 𝐵 ∩ 𝐴 ) ∈ Fin ) |
21 |
18 20
|
eqeltrrid |
⊢ ( 𝜑 → ( 𝐴 ∩ 𝐵 ) ∈ Fin ) |
22 |
17 21 5
|
fidmfisupp |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ↦ 𝐶 ) finSupp 𝑍 ) |
23 |
|
difexg |
⊢ ( 𝐴 ∈ 𝑈 → ( 𝐴 ∖ 𝐵 ) ∈ V ) |
24 |
|
mptexg |
⊢ ( ( 𝐴 ∖ 𝐵 ) ∈ V → ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↦ 𝑍 ) ∈ V ) |
25 |
2 23 24
|
3syl |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↦ 𝑍 ) ∈ V ) |
26 |
|
funmpt |
⊢ Fun ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↦ 𝑍 ) |
27 |
26
|
a1i |
⊢ ( 𝜑 → Fun ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↦ 𝑍 ) ) |
28 |
|
supppreima |
⊢ ( ( Fun ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↦ 𝑍 ) ∧ ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↦ 𝑍 ) ∈ V ∧ 𝑍 ∈ 𝑊 ) → ( ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↦ 𝑍 ) supp 𝑍 ) = ( ◡ ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↦ 𝑍 ) “ ( ran ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↦ 𝑍 ) ∖ { 𝑍 } ) ) ) |
29 |
26 25 5 28
|
mp3an2i |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↦ 𝑍 ) supp 𝑍 ) = ( ◡ ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↦ 𝑍 ) “ ( ran ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↦ 𝑍 ) ∖ { 𝑍 } ) ) ) |
30 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∖ 𝐵 ) = ∅ ) → ( 𝐴 ∖ 𝐵 ) = ∅ ) |
31 |
30
|
mpteq1d |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∖ 𝐵 ) = ∅ ) → ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↦ 𝑍 ) = ( 𝑥 ∈ ∅ ↦ 𝑍 ) ) |
32 |
|
mpt0 |
⊢ ( 𝑥 ∈ ∅ ↦ 𝑍 ) = ∅ |
33 |
31 32
|
eqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∖ 𝐵 ) = ∅ ) → ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↦ 𝑍 ) = ∅ ) |
34 |
33
|
cnveqd |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∖ 𝐵 ) = ∅ ) → ◡ ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↦ 𝑍 ) = ◡ ∅ ) |
35 |
|
cnv0 |
⊢ ◡ ∅ = ∅ |
36 |
34 35
|
eqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∖ 𝐵 ) = ∅ ) → ◡ ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↦ 𝑍 ) = ∅ ) |
37 |
36
|
imaeq1d |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∖ 𝐵 ) = ∅ ) → ( ◡ ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↦ 𝑍 ) “ ( ran ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↦ 𝑍 ) ∖ { 𝑍 } ) ) = ( ∅ “ ( ran ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↦ 𝑍 ) ∖ { 𝑍 } ) ) ) |
38 |
|
0ima |
⊢ ( ∅ “ ( ran ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↦ 𝑍 ) ∖ { 𝑍 } ) ) = ∅ |
39 |
37 38
|
eqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∖ 𝐵 ) = ∅ ) → ( ◡ ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↦ 𝑍 ) “ ( ran ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↦ 𝑍 ) ∖ { 𝑍 } ) ) = ∅ ) |
40 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↦ 𝑍 ) = ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↦ 𝑍 ) |
41 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∖ 𝐵 ) ≠ ∅ ) → ( 𝐴 ∖ 𝐵 ) ≠ ∅ ) |
42 |
40 41
|
rnmptc |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∖ 𝐵 ) ≠ ∅ ) → ran ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↦ 𝑍 ) = { 𝑍 } ) |
43 |
42
|
difeq1d |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∖ 𝐵 ) ≠ ∅ ) → ( ran ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↦ 𝑍 ) ∖ { 𝑍 } ) = ( { 𝑍 } ∖ { 𝑍 } ) ) |
44 |
|
difid |
⊢ ( { 𝑍 } ∖ { 𝑍 } ) = ∅ |
45 |
43 44
|
eqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∖ 𝐵 ) ≠ ∅ ) → ( ran ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↦ 𝑍 ) ∖ { 𝑍 } ) = ∅ ) |
46 |
45
|
imaeq2d |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∖ 𝐵 ) ≠ ∅ ) → ( ◡ ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↦ 𝑍 ) “ ( ran ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↦ 𝑍 ) ∖ { 𝑍 } ) ) = ( ◡ ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↦ 𝑍 ) “ ∅ ) ) |
47 |
|
ima0 |
⊢ ( ◡ ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↦ 𝑍 ) “ ∅ ) = ∅ |
48 |
46 47
|
eqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∖ 𝐵 ) ≠ ∅ ) → ( ◡ ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↦ 𝑍 ) “ ( ran ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↦ 𝑍 ) ∖ { 𝑍 } ) ) = ∅ ) |
49 |
39 48
|
pm2.61dane |
⊢ ( 𝜑 → ( ◡ ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↦ 𝑍 ) “ ( ran ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↦ 𝑍 ) ∖ { 𝑍 } ) ) = ∅ ) |
50 |
29 49
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↦ 𝑍 ) supp 𝑍 ) = ∅ ) |
51 |
|
0fin |
⊢ ∅ ∈ Fin |
52 |
50 51
|
eqeltrdi |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↦ 𝑍 ) supp 𝑍 ) ∈ Fin ) |
53 |
25 5 27 52
|
isfsuppd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↦ 𝑍 ) finSupp 𝑍 ) |
54 |
22 53
|
fsuppun |
⊢ ( 𝜑 → ( ( ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ↦ 𝐶 ) ∪ ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↦ 𝑍 ) ) supp 𝑍 ) ∈ Fin ) |
55 |
12 54
|
eqeltrid |
⊢ ( 𝜑 → ( 𝐹 supp 𝑍 ) ∈ Fin ) |
56 |
7 5 9 55
|
isfsuppd |
⊢ ( 𝜑 → 𝐹 finSupp 𝑍 ) |