Metamath Proof Explorer


Theorem mptima2

Description: Image of a function in maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypothesis mptima2.1 ( 𝜑𝐶𝐴 )
Assertion mptima2 ( 𝜑 → ( ( 𝑥𝐴𝐵 ) “ 𝐶 ) = ran ( 𝑥𝐶𝐵 ) )

Proof

Step Hyp Ref Expression
1 mptima2.1 ( 𝜑𝐶𝐴 )
2 mptima ( ( 𝑥𝐴𝐵 ) “ 𝐶 ) = ran ( 𝑥 ∈ ( 𝐴𝐶 ) ↦ 𝐵 )
3 sseqin2 ( 𝐶𝐴 ↔ ( 𝐴𝐶 ) = 𝐶 )
4 1 3 sylib ( 𝜑 → ( 𝐴𝐶 ) = 𝐶 )
5 4 mpteq1d ( 𝜑 → ( 𝑥 ∈ ( 𝐴𝐶 ) ↦ 𝐵 ) = ( 𝑥𝐶𝐵 ) )
6 5 rneqd ( 𝜑 → ran ( 𝑥 ∈ ( 𝐴𝐶 ) ↦ 𝐵 ) = ran ( 𝑥𝐶𝐵 ) )
7 2 6 syl5eq ( 𝜑 → ( ( 𝑥𝐴𝐵 ) “ 𝐶 ) = ran ( 𝑥𝐶𝐵 ) )