Description: Image of a function in maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | mptima2.1 | ⊢ ( 𝜑 → 𝐶 ⊆ 𝐴 ) | |
Assertion | mptima2 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ 𝐶 ) = ran ( 𝑥 ∈ 𝐶 ↦ 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mptima2.1 | ⊢ ( 𝜑 → 𝐶 ⊆ 𝐴 ) | |
2 | mptima | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ 𝐶 ) = ran ( 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) ↦ 𝐵 ) | |
3 | sseqin2 | ⊢ ( 𝐶 ⊆ 𝐴 ↔ ( 𝐴 ∩ 𝐶 ) = 𝐶 ) | |
4 | 1 3 | sylib | ⊢ ( 𝜑 → ( 𝐴 ∩ 𝐶 ) = 𝐶 ) |
5 | 4 | mpteq1d | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) ↦ 𝐵 ) = ( 𝑥 ∈ 𝐶 ↦ 𝐵 ) ) |
6 | 5 | rneqd | ⊢ ( 𝜑 → ran ( 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) ↦ 𝐵 ) = ran ( 𝑥 ∈ 𝐶 ↦ 𝐵 ) ) |
7 | 2 6 | syl5eq | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ 𝐶 ) = ran ( 𝑥 ∈ 𝐶 ↦ 𝐵 ) ) |