Metamath Proof Explorer


Theorem mptiniseg

Description: Converse singleton image of a function defined by maps-to. (Contributed by Stefan O'Rear, 25-Jan-2015)

Ref Expression
Hypothesis dmmpt.1 𝐹 = ( 𝑥𝐴𝐵 )
Assertion mptiniseg ( 𝐶𝑉 → ( 𝐹 “ { 𝐶 } ) = { 𝑥𝐴𝐵 = 𝐶 } )

Proof

Step Hyp Ref Expression
1 dmmpt.1 𝐹 = ( 𝑥𝐴𝐵 )
2 1 mptpreima ( 𝐹 “ { 𝐶 } ) = { 𝑥𝐴𝐵 ∈ { 𝐶 } }
3 elsn2g ( 𝐶𝑉 → ( 𝐵 ∈ { 𝐶 } ↔ 𝐵 = 𝐶 ) )
4 3 rabbidv ( 𝐶𝑉 → { 𝑥𝐴𝐵 ∈ { 𝐶 } } = { 𝑥𝐴𝐵 = 𝐶 } )
5 2 4 eqtrid ( 𝐶𝑉 → ( 𝐹 “ { 𝐶 } ) = { 𝑥𝐴𝐵 = 𝐶 } )