Description: Converse singleton image of a function defined by maps-to. (Contributed by Stefan O'Rear, 25-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | dmmpt.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
Assertion | mptiniseg | ⊢ ( 𝐶 ∈ 𝑉 → ( ◡ 𝐹 “ { 𝐶 } ) = { 𝑥 ∈ 𝐴 ∣ 𝐵 = 𝐶 } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmmpt.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
2 | 1 | mptpreima | ⊢ ( ◡ 𝐹 “ { 𝐶 } ) = { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ { 𝐶 } } |
3 | elsn2g | ⊢ ( 𝐶 ∈ 𝑉 → ( 𝐵 ∈ { 𝐶 } ↔ 𝐵 = 𝐶 ) ) | |
4 | 3 | rabbidv | ⊢ ( 𝐶 ∈ 𝑉 → { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ { 𝐶 } } = { 𝑥 ∈ 𝐴 ∣ 𝐵 = 𝐶 } ) |
5 | 2 4 | eqtrid | ⊢ ( 𝐶 ∈ 𝑉 → ( ◡ 𝐹 “ { 𝐶 } ) = { 𝑥 ∈ 𝐴 ∣ 𝐵 = 𝐶 } ) |