| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mptmpoopabbrdOLD.g | ⊢ ( 𝜑  →  𝐺  ∈  𝑊 ) | 
						
							| 2 |  | mptmpoopabbrdOLD.x | ⊢ ( 𝜑  →  𝑋  ∈  ( 𝐴 ‘ 𝐺 ) ) | 
						
							| 3 |  | mptmpoopabbrdOLD.y | ⊢ ( 𝜑  →  𝑌  ∈  ( 𝐵 ‘ 𝐺 ) ) | 
						
							| 4 |  | mptmpoopabbrdOLD.v | ⊢ ( 𝜑  →  { 〈 𝑓 ,  ℎ 〉  ∣  𝜓 }  ∈  𝑉 ) | 
						
							| 5 |  | mptmpoopabbrdOLD.r | ⊢ ( ( 𝜑  ∧  𝑓 ( 𝐷 ‘ 𝐺 ) ℎ )  →  𝜓 ) | 
						
							| 6 |  | mptmpoopabbrdOLD.1 | ⊢ ( ( 𝑎  =  𝑋  ∧  𝑏  =  𝑌 )  →  ( 𝜏  ↔  𝜃 ) ) | 
						
							| 7 |  | mptmpoopabbrdOLD.2 | ⊢ ( 𝑔  =  𝐺  →  ( 𝜒  ↔  𝜏 ) ) | 
						
							| 8 |  | mptmpoopabbrdOLD.m | ⊢ 𝑀  =  ( 𝑔  ∈  V  ↦  ( 𝑎  ∈  ( 𝐴 ‘ 𝑔 ) ,  𝑏  ∈  ( 𝐵 ‘ 𝑔 )  ↦  { 〈 𝑓 ,  ℎ 〉  ∣  ( 𝜒  ∧  𝑓 ( 𝐷 ‘ 𝑔 ) ℎ ) } ) ) | 
						
							| 9 |  | fveq2 | ⊢ ( 𝑔  =  𝐺  →  ( 𝐴 ‘ 𝑔 )  =  ( 𝐴 ‘ 𝐺 ) ) | 
						
							| 10 |  | fveq2 | ⊢ ( 𝑔  =  𝐺  →  ( 𝐵 ‘ 𝑔 )  =  ( 𝐵 ‘ 𝐺 ) ) | 
						
							| 11 |  | fveq2 | ⊢ ( 𝑔  =  𝐺  →  ( 𝐷 ‘ 𝑔 )  =  ( 𝐷 ‘ 𝐺 ) ) | 
						
							| 12 | 11 | breqd | ⊢ ( 𝑔  =  𝐺  →  ( 𝑓 ( 𝐷 ‘ 𝑔 ) ℎ  ↔  𝑓 ( 𝐷 ‘ 𝐺 ) ℎ ) ) | 
						
							| 13 | 7 12 | anbi12d | ⊢ ( 𝑔  =  𝐺  →  ( ( 𝜒  ∧  𝑓 ( 𝐷 ‘ 𝑔 ) ℎ )  ↔  ( 𝜏  ∧  𝑓 ( 𝐷 ‘ 𝐺 ) ℎ ) ) ) | 
						
							| 14 | 13 | opabbidv | ⊢ ( 𝑔  =  𝐺  →  { 〈 𝑓 ,  ℎ 〉  ∣  ( 𝜒  ∧  𝑓 ( 𝐷 ‘ 𝑔 ) ℎ ) }  =  { 〈 𝑓 ,  ℎ 〉  ∣  ( 𝜏  ∧  𝑓 ( 𝐷 ‘ 𝐺 ) ℎ ) } ) | 
						
							| 15 | 9 10 14 | mpoeq123dv | ⊢ ( 𝑔  =  𝐺  →  ( 𝑎  ∈  ( 𝐴 ‘ 𝑔 ) ,  𝑏  ∈  ( 𝐵 ‘ 𝑔 )  ↦  { 〈 𝑓 ,  ℎ 〉  ∣  ( 𝜒  ∧  𝑓 ( 𝐷 ‘ 𝑔 ) ℎ ) } )  =  ( 𝑎  ∈  ( 𝐴 ‘ 𝐺 ) ,  𝑏  ∈  ( 𝐵 ‘ 𝐺 )  ↦  { 〈 𝑓 ,  ℎ 〉  ∣  ( 𝜏  ∧  𝑓 ( 𝐷 ‘ 𝐺 ) ℎ ) } ) ) | 
						
							| 16 |  | elex | ⊢ ( 𝐺  ∈  𝑊  →  𝐺  ∈  V ) | 
						
							| 17 | 16 | adantr | ⊢ ( ( 𝐺  ∈  𝑊  ∧  𝐺  ∈  𝑊 )  →  𝐺  ∈  V ) | 
						
							| 18 |  | fvex | ⊢ ( 𝐴 ‘ 𝐺 )  ∈  V | 
						
							| 19 |  | fvex | ⊢ ( 𝐵 ‘ 𝐺 )  ∈  V | 
						
							| 20 | 18 19 | pm3.2i | ⊢ ( ( 𝐴 ‘ 𝐺 )  ∈  V  ∧  ( 𝐵 ‘ 𝐺 )  ∈  V ) | 
						
							| 21 |  | mpoexga | ⊢ ( ( ( 𝐴 ‘ 𝐺 )  ∈  V  ∧  ( 𝐵 ‘ 𝐺 )  ∈  V )  →  ( 𝑎  ∈  ( 𝐴 ‘ 𝐺 ) ,  𝑏  ∈  ( 𝐵 ‘ 𝐺 )  ↦  { 〈 𝑓 ,  ℎ 〉  ∣  ( 𝜏  ∧  𝑓 ( 𝐷 ‘ 𝐺 ) ℎ ) } )  ∈  V ) | 
						
							| 22 | 20 21 | mp1i | ⊢ ( ( 𝐺  ∈  𝑊  ∧  𝐺  ∈  𝑊 )  →  ( 𝑎  ∈  ( 𝐴 ‘ 𝐺 ) ,  𝑏  ∈  ( 𝐵 ‘ 𝐺 )  ↦  { 〈 𝑓 ,  ℎ 〉  ∣  ( 𝜏  ∧  𝑓 ( 𝐷 ‘ 𝐺 ) ℎ ) } )  ∈  V ) | 
						
							| 23 | 8 15 17 22 | fvmptd3 | ⊢ ( ( 𝐺  ∈  𝑊  ∧  𝐺  ∈  𝑊 )  →  ( 𝑀 ‘ 𝐺 )  =  ( 𝑎  ∈  ( 𝐴 ‘ 𝐺 ) ,  𝑏  ∈  ( 𝐵 ‘ 𝐺 )  ↦  { 〈 𝑓 ,  ℎ 〉  ∣  ( 𝜏  ∧  𝑓 ( 𝐷 ‘ 𝐺 ) ℎ ) } ) ) | 
						
							| 24 | 1 1 23 | syl2anc | ⊢ ( 𝜑  →  ( 𝑀 ‘ 𝐺 )  =  ( 𝑎  ∈  ( 𝐴 ‘ 𝐺 ) ,  𝑏  ∈  ( 𝐵 ‘ 𝐺 )  ↦  { 〈 𝑓 ,  ℎ 〉  ∣  ( 𝜏  ∧  𝑓 ( 𝐷 ‘ 𝐺 ) ℎ ) } ) ) | 
						
							| 25 | 24 | oveqd | ⊢ ( 𝜑  →  ( 𝑋 ( 𝑀 ‘ 𝐺 ) 𝑌 )  =  ( 𝑋 ( 𝑎  ∈  ( 𝐴 ‘ 𝐺 ) ,  𝑏  ∈  ( 𝐵 ‘ 𝐺 )  ↦  { 〈 𝑓 ,  ℎ 〉  ∣  ( 𝜏  ∧  𝑓 ( 𝐷 ‘ 𝐺 ) ℎ ) } ) 𝑌 ) ) | 
						
							| 26 |  | ancom | ⊢ ( ( 𝜃  ∧  𝑓 ( 𝐷 ‘ 𝐺 ) ℎ )  ↔  ( 𝑓 ( 𝐷 ‘ 𝐺 ) ℎ  ∧  𝜃 ) ) | 
						
							| 27 | 26 | opabbii | ⊢ { 〈 𝑓 ,  ℎ 〉  ∣  ( 𝜃  ∧  𝑓 ( 𝐷 ‘ 𝐺 ) ℎ ) }  =  { 〈 𝑓 ,  ℎ 〉  ∣  ( 𝑓 ( 𝐷 ‘ 𝐺 ) ℎ  ∧  𝜃 ) } | 
						
							| 28 | 5 4 | opabresex2d | ⊢ ( 𝜑  →  { 〈 𝑓 ,  ℎ 〉  ∣  ( 𝑓 ( 𝐷 ‘ 𝐺 ) ℎ  ∧  𝜃 ) }  ∈  V ) | 
						
							| 29 | 27 28 | eqeltrid | ⊢ ( 𝜑  →  { 〈 𝑓 ,  ℎ 〉  ∣  ( 𝜃  ∧  𝑓 ( 𝐷 ‘ 𝐺 ) ℎ ) }  ∈  V ) | 
						
							| 30 | 6 | anbi1d | ⊢ ( ( 𝑎  =  𝑋  ∧  𝑏  =  𝑌 )  →  ( ( 𝜏  ∧  𝑓 ( 𝐷 ‘ 𝐺 ) ℎ )  ↔  ( 𝜃  ∧  𝑓 ( 𝐷 ‘ 𝐺 ) ℎ ) ) ) | 
						
							| 31 | 30 | opabbidv | ⊢ ( ( 𝑎  =  𝑋  ∧  𝑏  =  𝑌 )  →  { 〈 𝑓 ,  ℎ 〉  ∣  ( 𝜏  ∧  𝑓 ( 𝐷 ‘ 𝐺 ) ℎ ) }  =  { 〈 𝑓 ,  ℎ 〉  ∣  ( 𝜃  ∧  𝑓 ( 𝐷 ‘ 𝐺 ) ℎ ) } ) | 
						
							| 32 |  | eqid | ⊢ ( 𝑎  ∈  ( 𝐴 ‘ 𝐺 ) ,  𝑏  ∈  ( 𝐵 ‘ 𝐺 )  ↦  { 〈 𝑓 ,  ℎ 〉  ∣  ( 𝜏  ∧  𝑓 ( 𝐷 ‘ 𝐺 ) ℎ ) } )  =  ( 𝑎  ∈  ( 𝐴 ‘ 𝐺 ) ,  𝑏  ∈  ( 𝐵 ‘ 𝐺 )  ↦  { 〈 𝑓 ,  ℎ 〉  ∣  ( 𝜏  ∧  𝑓 ( 𝐷 ‘ 𝐺 ) ℎ ) } ) | 
						
							| 33 | 31 32 | ovmpoga | ⊢ ( ( 𝑋  ∈  ( 𝐴 ‘ 𝐺 )  ∧  𝑌  ∈  ( 𝐵 ‘ 𝐺 )  ∧  { 〈 𝑓 ,  ℎ 〉  ∣  ( 𝜃  ∧  𝑓 ( 𝐷 ‘ 𝐺 ) ℎ ) }  ∈  V )  →  ( 𝑋 ( 𝑎  ∈  ( 𝐴 ‘ 𝐺 ) ,  𝑏  ∈  ( 𝐵 ‘ 𝐺 )  ↦  { 〈 𝑓 ,  ℎ 〉  ∣  ( 𝜏  ∧  𝑓 ( 𝐷 ‘ 𝐺 ) ℎ ) } ) 𝑌 )  =  { 〈 𝑓 ,  ℎ 〉  ∣  ( 𝜃  ∧  𝑓 ( 𝐷 ‘ 𝐺 ) ℎ ) } ) | 
						
							| 34 | 2 3 29 33 | syl3anc | ⊢ ( 𝜑  →  ( 𝑋 ( 𝑎  ∈  ( 𝐴 ‘ 𝐺 ) ,  𝑏  ∈  ( 𝐵 ‘ 𝐺 )  ↦  { 〈 𝑓 ,  ℎ 〉  ∣  ( 𝜏  ∧  𝑓 ( 𝐷 ‘ 𝐺 ) ℎ ) } ) 𝑌 )  =  { 〈 𝑓 ,  ℎ 〉  ∣  ( 𝜃  ∧  𝑓 ( 𝐷 ‘ 𝐺 ) ℎ ) } ) | 
						
							| 35 | 25 34 | eqtrd | ⊢ ( 𝜑  →  ( 𝑋 ( 𝑀 ‘ 𝐺 ) 𝑌 )  =  { 〈 𝑓 ,  ℎ 〉  ∣  ( 𝜃  ∧  𝑓 ( 𝐷 ‘ 𝐺 ) ℎ ) } ) |