| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							mptmpoopabbrd.g | 
							⊢ ( 𝜑  →  𝐺  ∈  𝑊 )  | 
						
						
							| 2 | 
							
								
							 | 
							mptmpoopabbrd.x | 
							⊢ ( 𝜑  →  𝑋  ∈  ( 𝐴 ‘ 𝐺 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							mptmpoopabbrd.y | 
							⊢ ( 𝜑  →  𝑌  ∈  ( 𝐵 ‘ 𝐺 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							mptmpoopabovd.m | 
							⊢ 𝑀  =  ( 𝑔  ∈  V  ↦  ( 𝑎  ∈  ( 𝐴 ‘ 𝑔 ) ,  𝑏  ∈  ( 𝐵 ‘ 𝑔 )  ↦  { 〈 𝑓 ,  ℎ 〉  ∣  ( 𝑓 ( 𝑎 ( 𝐶 ‘ 𝑔 ) 𝑏 ) ℎ  ∧  𝑓 ( 𝐷 ‘ 𝑔 ) ℎ ) } ) )  | 
						
						
							| 5 | 
							
								
							 | 
							oveq12 | 
							⊢ ( ( 𝑎  =  𝑋  ∧  𝑏  =  𝑌 )  →  ( 𝑎 ( 𝐶 ‘ 𝐺 ) 𝑏 )  =  ( 𝑋 ( 𝐶 ‘ 𝐺 ) 𝑌 ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							breqd | 
							⊢ ( ( 𝑎  =  𝑋  ∧  𝑏  =  𝑌 )  →  ( 𝑓 ( 𝑎 ( 𝐶 ‘ 𝐺 ) 𝑏 ) ℎ  ↔  𝑓 ( 𝑋 ( 𝐶 ‘ 𝐺 ) 𝑌 ) ℎ ) )  | 
						
						
							| 7 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑔  =  𝐺  →  ( 𝐶 ‘ 𝑔 )  =  ( 𝐶 ‘ 𝐺 ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							oveqd | 
							⊢ ( 𝑔  =  𝐺  →  ( 𝑎 ( 𝐶 ‘ 𝑔 ) 𝑏 )  =  ( 𝑎 ( 𝐶 ‘ 𝐺 ) 𝑏 ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							breqd | 
							⊢ ( 𝑔  =  𝐺  →  ( 𝑓 ( 𝑎 ( 𝐶 ‘ 𝑔 ) 𝑏 ) ℎ  ↔  𝑓 ( 𝑎 ( 𝐶 ‘ 𝐺 ) 𝑏 ) ℎ ) )  | 
						
						
							| 10 | 
							
								1 2 3 6 9 4
							 | 
							mptmpoopabbrd | 
							⊢ ( 𝜑  →  ( 𝑋 ( 𝑀 ‘ 𝐺 ) 𝑌 )  =  { 〈 𝑓 ,  ℎ 〉  ∣  ( 𝑓 ( 𝑋 ( 𝐶 ‘ 𝐺 ) 𝑌 ) ℎ  ∧  𝑓 ( 𝐷 ‘ 𝐺 ) ℎ ) } )  |