Step |
Hyp |
Ref |
Expression |
1 |
|
mptmpoopabbrd.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝑊 ) |
2 |
|
mptmpoopabbrd.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐴 ‘ 𝐺 ) ) |
3 |
|
mptmpoopabbrd.y |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝐵 ‘ 𝐺 ) ) |
4 |
|
mptmpoopabbrd.v |
⊢ ( 𝜑 → { 〈 𝑓 , ℎ 〉 ∣ 𝜓 } ∈ 𝑉 ) |
5 |
|
mptmpoopabbrd.r |
⊢ ( ( 𝜑 ∧ 𝑓 ( 𝐷 ‘ 𝐺 ) ℎ ) → 𝜓 ) |
6 |
|
mptmpoopabovd.m |
⊢ 𝑀 = ( 𝑔 ∈ V ↦ ( 𝑎 ∈ ( 𝐴 ‘ 𝑔 ) , 𝑏 ∈ ( 𝐵 ‘ 𝑔 ) ↦ { 〈 𝑓 , ℎ 〉 ∣ ( 𝑓 ( 𝑎 ( 𝐶 ‘ 𝑔 ) 𝑏 ) ℎ ∧ 𝑓 ( 𝐷 ‘ 𝑔 ) ℎ ) } ) ) |
7 |
|
oveq12 |
⊢ ( ( 𝑎 = 𝑋 ∧ 𝑏 = 𝑌 ) → ( 𝑎 ( 𝐶 ‘ 𝐺 ) 𝑏 ) = ( 𝑋 ( 𝐶 ‘ 𝐺 ) 𝑌 ) ) |
8 |
7
|
breqd |
⊢ ( ( 𝑎 = 𝑋 ∧ 𝑏 = 𝑌 ) → ( 𝑓 ( 𝑎 ( 𝐶 ‘ 𝐺 ) 𝑏 ) ℎ ↔ 𝑓 ( 𝑋 ( 𝐶 ‘ 𝐺 ) 𝑌 ) ℎ ) ) |
9 |
|
fveq2 |
⊢ ( 𝑔 = 𝐺 → ( 𝐶 ‘ 𝑔 ) = ( 𝐶 ‘ 𝐺 ) ) |
10 |
9
|
oveqd |
⊢ ( 𝑔 = 𝐺 → ( 𝑎 ( 𝐶 ‘ 𝑔 ) 𝑏 ) = ( 𝑎 ( 𝐶 ‘ 𝐺 ) 𝑏 ) ) |
11 |
10
|
breqd |
⊢ ( 𝑔 = 𝐺 → ( 𝑓 ( 𝑎 ( 𝐶 ‘ 𝑔 ) 𝑏 ) ℎ ↔ 𝑓 ( 𝑎 ( 𝐶 ‘ 𝐺 ) 𝑏 ) ℎ ) ) |
12 |
1 2 3 4 5 8 11 6
|
mptmpoopabbrd |
⊢ ( 𝜑 → ( 𝑋 ( 𝑀 ‘ 𝐺 ) 𝑌 ) = { 〈 𝑓 , ℎ 〉 ∣ ( 𝑓 ( 𝑋 ( 𝐶 ‘ 𝐺 ) 𝑌 ) ℎ ∧ 𝑓 ( 𝐷 ‘ 𝐺 ) ℎ ) } ) |