| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mptmpoopabbrdOLD.g | ⊢ ( 𝜑  →  𝐺  ∈  𝑊 ) | 
						
							| 2 |  | mptmpoopabbrdOLD.x | ⊢ ( 𝜑  →  𝑋  ∈  ( 𝐴 ‘ 𝐺 ) ) | 
						
							| 3 |  | mptmpoopabbrdOLD.y | ⊢ ( 𝜑  →  𝑌  ∈  ( 𝐵 ‘ 𝐺 ) ) | 
						
							| 4 |  | mptmpoopabbrdOLD.v | ⊢ ( 𝜑  →  { 〈 𝑓 ,  ℎ 〉  ∣  𝜓 }  ∈  𝑉 ) | 
						
							| 5 |  | mptmpoopabbrdOLD.r | ⊢ ( ( 𝜑  ∧  𝑓 ( 𝐷 ‘ 𝐺 ) ℎ )  →  𝜓 ) | 
						
							| 6 |  | mptmpoopabovdOLD.m | ⊢ 𝑀  =  ( 𝑔  ∈  V  ↦  ( 𝑎  ∈  ( 𝐴 ‘ 𝑔 ) ,  𝑏  ∈  ( 𝐵 ‘ 𝑔 )  ↦  { 〈 𝑓 ,  ℎ 〉  ∣  ( 𝑓 ( 𝑎 ( 𝐶 ‘ 𝑔 ) 𝑏 ) ℎ  ∧  𝑓 ( 𝐷 ‘ 𝑔 ) ℎ ) } ) ) | 
						
							| 7 |  | oveq12 | ⊢ ( ( 𝑎  =  𝑋  ∧  𝑏  =  𝑌 )  →  ( 𝑎 ( 𝐶 ‘ 𝐺 ) 𝑏 )  =  ( 𝑋 ( 𝐶 ‘ 𝐺 ) 𝑌 ) ) | 
						
							| 8 | 7 | breqd | ⊢ ( ( 𝑎  =  𝑋  ∧  𝑏  =  𝑌 )  →  ( 𝑓 ( 𝑎 ( 𝐶 ‘ 𝐺 ) 𝑏 ) ℎ  ↔  𝑓 ( 𝑋 ( 𝐶 ‘ 𝐺 ) 𝑌 ) ℎ ) ) | 
						
							| 9 |  | fveq2 | ⊢ ( 𝑔  =  𝐺  →  ( 𝐶 ‘ 𝑔 )  =  ( 𝐶 ‘ 𝐺 ) ) | 
						
							| 10 | 9 | oveqd | ⊢ ( 𝑔  =  𝐺  →  ( 𝑎 ( 𝐶 ‘ 𝑔 ) 𝑏 )  =  ( 𝑎 ( 𝐶 ‘ 𝐺 ) 𝑏 ) ) | 
						
							| 11 | 10 | breqd | ⊢ ( 𝑔  =  𝐺  →  ( 𝑓 ( 𝑎 ( 𝐶 ‘ 𝑔 ) 𝑏 ) ℎ  ↔  𝑓 ( 𝑎 ( 𝐶 ‘ 𝐺 ) 𝑏 ) ℎ ) ) | 
						
							| 12 | 1 2 3 4 5 8 11 6 | mptmpoopabbrdOLDOLD | ⊢ ( 𝜑  →  ( 𝑋 ( 𝑀 ‘ 𝐺 ) 𝑌 )  =  { 〈 𝑓 ,  ℎ 〉  ∣  ( 𝑓 ( 𝑋 ( 𝐶 ‘ 𝐺 ) 𝑌 ) ℎ  ∧  𝑓 ( 𝐷 ‘ 𝐺 ) ℎ ) } ) |