Step |
Hyp |
Ref |
Expression |
1 |
|
mptnn0fsupp.0 |
⊢ ( 𝜑 → 0 ∈ 𝑉 ) |
2 |
|
mptnn0fsupp.c |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝐶 ∈ 𝐵 ) |
3 |
|
mptnn0fsupp.s |
⊢ ( 𝜑 → ∃ 𝑠 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐶 = 0 ) ) |
4 |
2
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ0 𝐶 ∈ 𝐵 ) |
5 |
|
eqid |
⊢ ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) = ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) |
6 |
5
|
fnmpt |
⊢ ( ∀ 𝑘 ∈ ℕ0 𝐶 ∈ 𝐵 → ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) Fn ℕ0 ) |
7 |
4 6
|
syl |
⊢ ( 𝜑 → ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) Fn ℕ0 ) |
8 |
|
nn0ex |
⊢ ℕ0 ∈ V |
9 |
8
|
a1i |
⊢ ( 𝜑 → ℕ0 ∈ V ) |
10 |
1
|
elexd |
⊢ ( 𝜑 → 0 ∈ V ) |
11 |
|
suppvalfn |
⊢ ( ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) Fn ℕ0 ∧ ℕ0 ∈ V ∧ 0 ∈ V ) → ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) supp 0 ) = { 𝑥 ∈ ℕ0 ∣ ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ‘ 𝑥 ) ≠ 0 } ) |
12 |
7 9 10 11
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) supp 0 ) = { 𝑥 ∈ ℕ0 ∣ ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ‘ 𝑥 ) ≠ 0 } ) |
13 |
|
nne |
⊢ ( ¬ ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ‘ 𝑥 ) ≠ 0 ↔ ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ‘ 𝑥 ) = 0 ) |
14 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → 𝑥 ∈ ℕ0 ) |
15 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → ∀ 𝑘 ∈ ℕ0 𝐶 ∈ 𝐵 ) |
16 |
|
rspcsbela |
⊢ ( ( 𝑥 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ℕ0 𝐶 ∈ 𝐵 ) → ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ∈ 𝐵 ) |
17 |
14 15 16
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ∈ 𝐵 ) |
18 |
5
|
fvmpts |
⊢ ( ( 𝑥 ∈ ℕ0 ∧ ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ∈ 𝐵 ) → ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ‘ 𝑥 ) = ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ) |
19 |
14 17 18
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ‘ 𝑥 ) = ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ) |
20 |
19
|
eqeq1d |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → ( ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ‘ 𝑥 ) = 0 ↔ ⦋ 𝑥 / 𝑘 ⦌ 𝐶 = 0 ) ) |
21 |
13 20
|
syl5bb |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → ( ¬ ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ‘ 𝑥 ) ≠ 0 ↔ ⦋ 𝑥 / 𝑘 ⦌ 𝐶 = 0 ) ) |
22 |
21
|
imbi2d |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → ( ( 𝑠 < 𝑥 → ¬ ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ‘ 𝑥 ) ≠ 0 ) ↔ ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐶 = 0 ) ) ) |
23 |
22
|
ralbidva |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) → ( ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ¬ ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ‘ 𝑥 ) ≠ 0 ) ↔ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐶 = 0 ) ) ) |
24 |
23
|
rexbidva |
⊢ ( 𝜑 → ( ∃ 𝑠 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ¬ ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ‘ 𝑥 ) ≠ 0 ) ↔ ∃ 𝑠 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐶 = 0 ) ) ) |
25 |
3 24
|
mpbird |
⊢ ( 𝜑 → ∃ 𝑠 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ¬ ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ‘ 𝑥 ) ≠ 0 ) ) |
26 |
|
rabssnn0fi |
⊢ ( { 𝑥 ∈ ℕ0 ∣ ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ‘ 𝑥 ) ≠ 0 } ∈ Fin ↔ ∃ 𝑠 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ¬ ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ‘ 𝑥 ) ≠ 0 ) ) |
27 |
25 26
|
sylibr |
⊢ ( 𝜑 → { 𝑥 ∈ ℕ0 ∣ ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ‘ 𝑥 ) ≠ 0 } ∈ Fin ) |
28 |
12 27
|
eqeltrd |
⊢ ( 𝜑 → ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) supp 0 ) ∈ Fin ) |
29 |
|
funmpt |
⊢ Fun ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) |
30 |
8
|
mptex |
⊢ ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ∈ V |
31 |
|
funisfsupp |
⊢ ( ( Fun ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ∧ ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ∈ V ∧ 0 ∈ V ) → ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) finSupp 0 ↔ ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) supp 0 ) ∈ Fin ) ) |
32 |
29 30 10 31
|
mp3an12i |
⊢ ( 𝜑 → ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) finSupp 0 ↔ ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) supp 0 ) ∈ Fin ) ) |
33 |
28 32
|
mpbird |
⊢ ( 𝜑 → ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) finSupp 0 ) |