| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mptnn0fsupp.0 | ⊢ ( 𝜑  →   0   ∈  𝑉 ) | 
						
							| 2 |  | mptnn0fsupp.c | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  𝐶  ∈  𝐵 ) | 
						
							| 3 |  | mptnn0fsuppd.d | ⊢ ( 𝑘  =  𝑥  →  𝐶  =  𝐷 ) | 
						
							| 4 |  | mptnn0fsuppd.s | ⊢ ( 𝜑  →  ∃ 𝑠  ∈  ℕ0 ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  𝐷  =   0  ) ) | 
						
							| 5 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 6 | 5 3 | csbie | ⊢ ⦋ 𝑥  /  𝑘 ⦌ 𝐶  =  𝐷 | 
						
							| 7 |  | id | ⊢ ( 𝐷  =   0   →  𝐷  =   0  ) | 
						
							| 8 | 6 7 | eqtrid | ⊢ ( 𝐷  =   0   →  ⦋ 𝑥  /  𝑘 ⦌ 𝐶  =   0  ) | 
						
							| 9 | 8 | imim2i | ⊢ ( ( 𝑠  <  𝑥  →  𝐷  =   0  )  →  ( 𝑠  <  𝑥  →  ⦋ 𝑥  /  𝑘 ⦌ 𝐶  =   0  ) ) | 
						
							| 10 | 9 | ralimi | ⊢ ( ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  𝐷  =   0  )  →  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ⦋ 𝑥  /  𝑘 ⦌ 𝐶  =   0  ) ) | 
						
							| 11 | 10 | reximi | ⊢ ( ∃ 𝑠  ∈  ℕ0 ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  𝐷  =   0  )  →  ∃ 𝑠  ∈  ℕ0 ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ⦋ 𝑥  /  𝑘 ⦌ 𝐶  =   0  ) ) | 
						
							| 12 | 4 11 | syl | ⊢ ( 𝜑  →  ∃ 𝑠  ∈  ℕ0 ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ⦋ 𝑥  /  𝑘 ⦌ 𝐶  =   0  ) ) | 
						
							| 13 | 1 2 12 | mptnn0fsupp | ⊢ ( 𝜑  →  ( 𝑘  ∈  ℕ0  ↦  𝐶 )  finSupp   0  ) |