Metamath Proof Explorer


Theorem mptrabex

Description: If the domain of a function given by maps-to notation is a class abstraction based on a set, the function is a set. (Contributed by AV, 16-Jul-2019) (Revised by AV, 26-Mar-2021)

Ref Expression
Hypothesis mptrabex.1 𝐴 ∈ V
Assertion mptrabex ( 𝑥 ∈ { 𝑦𝐴𝜑 } ↦ 𝐵 ) ∈ V

Proof

Step Hyp Ref Expression
1 mptrabex.1 𝐴 ∈ V
2 1 rabex { 𝑦𝐴𝜑 } ∈ V
3 2 mptex ( 𝑥 ∈ { 𝑦𝐴𝜑 } ↦ 𝐵 ) ∈ V