| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mptscmfsupp0.d | ⊢ ( 𝜑  →  𝐷  ∈  𝑉 ) | 
						
							| 2 |  | mptscmfsupp0.q | ⊢ ( 𝜑  →  𝑄  ∈  LMod ) | 
						
							| 3 |  | mptscmfsupp0.r | ⊢ ( 𝜑  →  𝑅  =  ( Scalar ‘ 𝑄 ) ) | 
						
							| 4 |  | mptscmfsupp0.k | ⊢ 𝐾  =  ( Base ‘ 𝑄 ) | 
						
							| 5 |  | mptscmfsupp0.s | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐷 )  →  𝑆  ∈  𝐵 ) | 
						
							| 6 |  | mptscmfsupp0.w | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐷 )  →  𝑊  ∈  𝐾 ) | 
						
							| 7 |  | mptscmfsupp0.0 | ⊢  0   =  ( 0g ‘ 𝑄 ) | 
						
							| 8 |  | mptscmfsupp0.z | ⊢ 𝑍  =  ( 0g ‘ 𝑅 ) | 
						
							| 9 |  | mptscmfsupp0.m | ⊢  ∗   =  (  ·𝑠  ‘ 𝑄 ) | 
						
							| 10 |  | mptscmfsupp0.f | ⊢ ( 𝜑  →  ( 𝑘  ∈  𝐷  ↦  𝑆 )  finSupp  𝑍 ) | 
						
							| 11 | 1 | mptexd | ⊢ ( 𝜑  →  ( 𝑘  ∈  𝐷  ↦  ( 𝑆  ∗  𝑊 ) )  ∈  V ) | 
						
							| 12 |  | funmpt | ⊢ Fun  ( 𝑘  ∈  𝐷  ↦  ( 𝑆  ∗  𝑊 ) ) | 
						
							| 13 | 12 | a1i | ⊢ ( 𝜑  →  Fun  ( 𝑘  ∈  𝐷  ↦  ( 𝑆  ∗  𝑊 ) ) ) | 
						
							| 14 | 7 | fvexi | ⊢  0   ∈  V | 
						
							| 15 | 14 | a1i | ⊢ ( 𝜑  →   0   ∈  V ) | 
						
							| 16 | 10 | fsuppimpd | ⊢ ( 𝜑  →  ( ( 𝑘  ∈  𝐷  ↦  𝑆 )  supp  𝑍 )  ∈  Fin ) | 
						
							| 17 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑑  ∈  𝐷 )  →  𝑑  ∈  𝐷 ) | 
						
							| 18 | 5 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  𝐷 𝑆  ∈  𝐵 ) | 
						
							| 19 | 18 | adantr | ⊢ ( ( 𝜑  ∧  𝑑  ∈  𝐷 )  →  ∀ 𝑘  ∈  𝐷 𝑆  ∈  𝐵 ) | 
						
							| 20 |  | rspcsbela | ⊢ ( ( 𝑑  ∈  𝐷  ∧  ∀ 𝑘  ∈  𝐷 𝑆  ∈  𝐵 )  →  ⦋ 𝑑  /  𝑘 ⦌ 𝑆  ∈  𝐵 ) | 
						
							| 21 | 17 19 20 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑑  ∈  𝐷 )  →  ⦋ 𝑑  /  𝑘 ⦌ 𝑆  ∈  𝐵 ) | 
						
							| 22 |  | eqid | ⊢ ( 𝑘  ∈  𝐷  ↦  𝑆 )  =  ( 𝑘  ∈  𝐷  ↦  𝑆 ) | 
						
							| 23 | 22 | fvmpts | ⊢ ( ( 𝑑  ∈  𝐷  ∧  ⦋ 𝑑  /  𝑘 ⦌ 𝑆  ∈  𝐵 )  →  ( ( 𝑘  ∈  𝐷  ↦  𝑆 ) ‘ 𝑑 )  =  ⦋ 𝑑  /  𝑘 ⦌ 𝑆 ) | 
						
							| 24 | 17 21 23 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑑  ∈  𝐷 )  →  ( ( 𝑘  ∈  𝐷  ↦  𝑆 ) ‘ 𝑑 )  =  ⦋ 𝑑  /  𝑘 ⦌ 𝑆 ) | 
						
							| 25 | 24 | eqeq1d | ⊢ ( ( 𝜑  ∧  𝑑  ∈  𝐷 )  →  ( ( ( 𝑘  ∈  𝐷  ↦  𝑆 ) ‘ 𝑑 )  =  𝑍  ↔  ⦋ 𝑑  /  𝑘 ⦌ 𝑆  =  𝑍 ) ) | 
						
							| 26 |  | oveq1 | ⊢ ( ⦋ 𝑑  /  𝑘 ⦌ 𝑆  =  𝑍  →  ( ⦋ 𝑑  /  𝑘 ⦌ 𝑆  ∗  ⦋ 𝑑  /  𝑘 ⦌ 𝑊 )  =  ( 𝑍  ∗  ⦋ 𝑑  /  𝑘 ⦌ 𝑊 ) ) | 
						
							| 27 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑑  ∈  𝐷 )  →  𝑅  =  ( Scalar ‘ 𝑄 ) ) | 
						
							| 28 | 27 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑑  ∈  𝐷 )  →  ( 0g ‘ 𝑅 )  =  ( 0g ‘ ( Scalar ‘ 𝑄 ) ) ) | 
						
							| 29 | 8 28 | eqtrid | ⊢ ( ( 𝜑  ∧  𝑑  ∈  𝐷 )  →  𝑍  =  ( 0g ‘ ( Scalar ‘ 𝑄 ) ) ) | 
						
							| 30 | 29 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑑  ∈  𝐷 )  →  ( 𝑍  ∗  ⦋ 𝑑  /  𝑘 ⦌ 𝑊 )  =  ( ( 0g ‘ ( Scalar ‘ 𝑄 ) )  ∗  ⦋ 𝑑  /  𝑘 ⦌ 𝑊 ) ) | 
						
							| 31 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑑  ∈  𝐷 )  →  𝑄  ∈  LMod ) | 
						
							| 32 | 6 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  𝐷 𝑊  ∈  𝐾 ) | 
						
							| 33 | 32 | adantr | ⊢ ( ( 𝜑  ∧  𝑑  ∈  𝐷 )  →  ∀ 𝑘  ∈  𝐷 𝑊  ∈  𝐾 ) | 
						
							| 34 |  | rspcsbela | ⊢ ( ( 𝑑  ∈  𝐷  ∧  ∀ 𝑘  ∈  𝐷 𝑊  ∈  𝐾 )  →  ⦋ 𝑑  /  𝑘 ⦌ 𝑊  ∈  𝐾 ) | 
						
							| 35 | 17 33 34 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑑  ∈  𝐷 )  →  ⦋ 𝑑  /  𝑘 ⦌ 𝑊  ∈  𝐾 ) | 
						
							| 36 |  | eqid | ⊢ ( Scalar ‘ 𝑄 )  =  ( Scalar ‘ 𝑄 ) | 
						
							| 37 |  | eqid | ⊢ ( 0g ‘ ( Scalar ‘ 𝑄 ) )  =  ( 0g ‘ ( Scalar ‘ 𝑄 ) ) | 
						
							| 38 | 4 36 9 37 7 | lmod0vs | ⊢ ( ( 𝑄  ∈  LMod  ∧  ⦋ 𝑑  /  𝑘 ⦌ 𝑊  ∈  𝐾 )  →  ( ( 0g ‘ ( Scalar ‘ 𝑄 ) )  ∗  ⦋ 𝑑  /  𝑘 ⦌ 𝑊 )  =   0  ) | 
						
							| 39 | 31 35 38 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑑  ∈  𝐷 )  →  ( ( 0g ‘ ( Scalar ‘ 𝑄 ) )  ∗  ⦋ 𝑑  /  𝑘 ⦌ 𝑊 )  =   0  ) | 
						
							| 40 | 30 39 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑑  ∈  𝐷 )  →  ( 𝑍  ∗  ⦋ 𝑑  /  𝑘 ⦌ 𝑊 )  =   0  ) | 
						
							| 41 | 26 40 | sylan9eqr | ⊢ ( ( ( 𝜑  ∧  𝑑  ∈  𝐷 )  ∧  ⦋ 𝑑  /  𝑘 ⦌ 𝑆  =  𝑍 )  →  ( ⦋ 𝑑  /  𝑘 ⦌ 𝑆  ∗  ⦋ 𝑑  /  𝑘 ⦌ 𝑊 )  =   0  ) | 
						
							| 42 |  | csbov12g | ⊢ ( 𝑑  ∈  𝐷  →  ⦋ 𝑑  /  𝑘 ⦌ ( 𝑆  ∗  𝑊 )  =  ( ⦋ 𝑑  /  𝑘 ⦌ 𝑆  ∗  ⦋ 𝑑  /  𝑘 ⦌ 𝑊 ) ) | 
						
							| 43 | 42 | adantl | ⊢ ( ( 𝜑  ∧  𝑑  ∈  𝐷 )  →  ⦋ 𝑑  /  𝑘 ⦌ ( 𝑆  ∗  𝑊 )  =  ( ⦋ 𝑑  /  𝑘 ⦌ 𝑆  ∗  ⦋ 𝑑  /  𝑘 ⦌ 𝑊 ) ) | 
						
							| 44 |  | ovex | ⊢ ( ⦋ 𝑑  /  𝑘 ⦌ 𝑆  ∗  ⦋ 𝑑  /  𝑘 ⦌ 𝑊 )  ∈  V | 
						
							| 45 | 43 44 | eqeltrdi | ⊢ ( ( 𝜑  ∧  𝑑  ∈  𝐷 )  →  ⦋ 𝑑  /  𝑘 ⦌ ( 𝑆  ∗  𝑊 )  ∈  V ) | 
						
							| 46 |  | eqid | ⊢ ( 𝑘  ∈  𝐷  ↦  ( 𝑆  ∗  𝑊 ) )  =  ( 𝑘  ∈  𝐷  ↦  ( 𝑆  ∗  𝑊 ) ) | 
						
							| 47 | 46 | fvmpts | ⊢ ( ( 𝑑  ∈  𝐷  ∧  ⦋ 𝑑  /  𝑘 ⦌ ( 𝑆  ∗  𝑊 )  ∈  V )  →  ( ( 𝑘  ∈  𝐷  ↦  ( 𝑆  ∗  𝑊 ) ) ‘ 𝑑 )  =  ⦋ 𝑑  /  𝑘 ⦌ ( 𝑆  ∗  𝑊 ) ) | 
						
							| 48 | 17 45 47 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑑  ∈  𝐷 )  →  ( ( 𝑘  ∈  𝐷  ↦  ( 𝑆  ∗  𝑊 ) ) ‘ 𝑑 )  =  ⦋ 𝑑  /  𝑘 ⦌ ( 𝑆  ∗  𝑊 ) ) | 
						
							| 49 | 48 43 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑑  ∈  𝐷 )  →  ( ( 𝑘  ∈  𝐷  ↦  ( 𝑆  ∗  𝑊 ) ) ‘ 𝑑 )  =  ( ⦋ 𝑑  /  𝑘 ⦌ 𝑆  ∗  ⦋ 𝑑  /  𝑘 ⦌ 𝑊 ) ) | 
						
							| 50 | 49 | eqeq1d | ⊢ ( ( 𝜑  ∧  𝑑  ∈  𝐷 )  →  ( ( ( 𝑘  ∈  𝐷  ↦  ( 𝑆  ∗  𝑊 ) ) ‘ 𝑑 )  =   0   ↔  ( ⦋ 𝑑  /  𝑘 ⦌ 𝑆  ∗  ⦋ 𝑑  /  𝑘 ⦌ 𝑊 )  =   0  ) ) | 
						
							| 51 | 50 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑑  ∈  𝐷 )  ∧  ⦋ 𝑑  /  𝑘 ⦌ 𝑆  =  𝑍 )  →  ( ( ( 𝑘  ∈  𝐷  ↦  ( 𝑆  ∗  𝑊 ) ) ‘ 𝑑 )  =   0   ↔  ( ⦋ 𝑑  /  𝑘 ⦌ 𝑆  ∗  ⦋ 𝑑  /  𝑘 ⦌ 𝑊 )  =   0  ) ) | 
						
							| 52 | 41 51 | mpbird | ⊢ ( ( ( 𝜑  ∧  𝑑  ∈  𝐷 )  ∧  ⦋ 𝑑  /  𝑘 ⦌ 𝑆  =  𝑍 )  →  ( ( 𝑘  ∈  𝐷  ↦  ( 𝑆  ∗  𝑊 ) ) ‘ 𝑑 )  =   0  ) | 
						
							| 53 | 52 | ex | ⊢ ( ( 𝜑  ∧  𝑑  ∈  𝐷 )  →  ( ⦋ 𝑑  /  𝑘 ⦌ 𝑆  =  𝑍  →  ( ( 𝑘  ∈  𝐷  ↦  ( 𝑆  ∗  𝑊 ) ) ‘ 𝑑 )  =   0  ) ) | 
						
							| 54 | 25 53 | sylbid | ⊢ ( ( 𝜑  ∧  𝑑  ∈  𝐷 )  →  ( ( ( 𝑘  ∈  𝐷  ↦  𝑆 ) ‘ 𝑑 )  =  𝑍  →  ( ( 𝑘  ∈  𝐷  ↦  ( 𝑆  ∗  𝑊 ) ) ‘ 𝑑 )  =   0  ) ) | 
						
							| 55 | 54 | necon3d | ⊢ ( ( 𝜑  ∧  𝑑  ∈  𝐷 )  →  ( ( ( 𝑘  ∈  𝐷  ↦  ( 𝑆  ∗  𝑊 ) ) ‘ 𝑑 )  ≠   0   →  ( ( 𝑘  ∈  𝐷  ↦  𝑆 ) ‘ 𝑑 )  ≠  𝑍 ) ) | 
						
							| 56 | 55 | ss2rabdv | ⊢ ( 𝜑  →  { 𝑑  ∈  𝐷  ∣  ( ( 𝑘  ∈  𝐷  ↦  ( 𝑆  ∗  𝑊 ) ) ‘ 𝑑 )  ≠   0  }  ⊆  { 𝑑  ∈  𝐷  ∣  ( ( 𝑘  ∈  𝐷  ↦  𝑆 ) ‘ 𝑑 )  ≠  𝑍 } ) | 
						
							| 57 |  | ovex | ⊢ ( 𝑆  ∗  𝑊 )  ∈  V | 
						
							| 58 | 57 | rgenw | ⊢ ∀ 𝑘  ∈  𝐷 ( 𝑆  ∗  𝑊 )  ∈  V | 
						
							| 59 | 46 | fnmpt | ⊢ ( ∀ 𝑘  ∈  𝐷 ( 𝑆  ∗  𝑊 )  ∈  V  →  ( 𝑘  ∈  𝐷  ↦  ( 𝑆  ∗  𝑊 ) )  Fn  𝐷 ) | 
						
							| 60 | 58 59 | mp1i | ⊢ ( 𝜑  →  ( 𝑘  ∈  𝐷  ↦  ( 𝑆  ∗  𝑊 ) )  Fn  𝐷 ) | 
						
							| 61 |  | suppvalfn | ⊢ ( ( ( 𝑘  ∈  𝐷  ↦  ( 𝑆  ∗  𝑊 ) )  Fn  𝐷  ∧  𝐷  ∈  𝑉  ∧   0   ∈  V )  →  ( ( 𝑘  ∈  𝐷  ↦  ( 𝑆  ∗  𝑊 ) )  supp   0  )  =  { 𝑑  ∈  𝐷  ∣  ( ( 𝑘  ∈  𝐷  ↦  ( 𝑆  ∗  𝑊 ) ) ‘ 𝑑 )  ≠   0  } ) | 
						
							| 62 | 60 1 15 61 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝑘  ∈  𝐷  ↦  ( 𝑆  ∗  𝑊 ) )  supp   0  )  =  { 𝑑  ∈  𝐷  ∣  ( ( 𝑘  ∈  𝐷  ↦  ( 𝑆  ∗  𝑊 ) ) ‘ 𝑑 )  ≠   0  } ) | 
						
							| 63 | 22 | fnmpt | ⊢ ( ∀ 𝑘  ∈  𝐷 𝑆  ∈  𝐵  →  ( 𝑘  ∈  𝐷  ↦  𝑆 )  Fn  𝐷 ) | 
						
							| 64 | 18 63 | syl | ⊢ ( 𝜑  →  ( 𝑘  ∈  𝐷  ↦  𝑆 )  Fn  𝐷 ) | 
						
							| 65 | 8 | fvexi | ⊢ 𝑍  ∈  V | 
						
							| 66 | 65 | a1i | ⊢ ( 𝜑  →  𝑍  ∈  V ) | 
						
							| 67 |  | suppvalfn | ⊢ ( ( ( 𝑘  ∈  𝐷  ↦  𝑆 )  Fn  𝐷  ∧  𝐷  ∈  𝑉  ∧  𝑍  ∈  V )  →  ( ( 𝑘  ∈  𝐷  ↦  𝑆 )  supp  𝑍 )  =  { 𝑑  ∈  𝐷  ∣  ( ( 𝑘  ∈  𝐷  ↦  𝑆 ) ‘ 𝑑 )  ≠  𝑍 } ) | 
						
							| 68 | 64 1 66 67 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝑘  ∈  𝐷  ↦  𝑆 )  supp  𝑍 )  =  { 𝑑  ∈  𝐷  ∣  ( ( 𝑘  ∈  𝐷  ↦  𝑆 ) ‘ 𝑑 )  ≠  𝑍 } ) | 
						
							| 69 | 56 62 68 | 3sstr4d | ⊢ ( 𝜑  →  ( ( 𝑘  ∈  𝐷  ↦  ( 𝑆  ∗  𝑊 ) )  supp   0  )  ⊆  ( ( 𝑘  ∈  𝐷  ↦  𝑆 )  supp  𝑍 ) ) | 
						
							| 70 |  | suppssfifsupp | ⊢ ( ( ( ( 𝑘  ∈  𝐷  ↦  ( 𝑆  ∗  𝑊 ) )  ∈  V  ∧  Fun  ( 𝑘  ∈  𝐷  ↦  ( 𝑆  ∗  𝑊 ) )  ∧   0   ∈  V )  ∧  ( ( ( 𝑘  ∈  𝐷  ↦  𝑆 )  supp  𝑍 )  ∈  Fin  ∧  ( ( 𝑘  ∈  𝐷  ↦  ( 𝑆  ∗  𝑊 ) )  supp   0  )  ⊆  ( ( 𝑘  ∈  𝐷  ↦  𝑆 )  supp  𝑍 ) ) )  →  ( 𝑘  ∈  𝐷  ↦  ( 𝑆  ∗  𝑊 ) )  finSupp   0  ) | 
						
							| 71 | 11 13 15 16 69 70 | syl32anc | ⊢ ( 𝜑  →  ( 𝑘  ∈  𝐷  ↦  ( 𝑆  ∗  𝑊 ) )  finSupp   0  ) |