Metamath Proof Explorer


Theorem mptscmfsupp0

Description: A mapping to a scalar product is finitely supported if the mapping to the scalar is finitely supported. (Contributed by AV, 5-Oct-2019)

Ref Expression
Hypotheses mptscmfsupp0.d ( 𝜑𝐷𝑉 )
mptscmfsupp0.q ( 𝜑𝑄 ∈ LMod )
mptscmfsupp0.r ( 𝜑𝑅 = ( Scalar ‘ 𝑄 ) )
mptscmfsupp0.k 𝐾 = ( Base ‘ 𝑄 )
mptscmfsupp0.s ( ( 𝜑𝑘𝐷 ) → 𝑆𝐵 )
mptscmfsupp0.w ( ( 𝜑𝑘𝐷 ) → 𝑊𝐾 )
mptscmfsupp0.0 0 = ( 0g𝑄 )
mptscmfsupp0.z 𝑍 = ( 0g𝑅 )
mptscmfsupp0.m = ( ·𝑠𝑄 )
mptscmfsupp0.f ( 𝜑 → ( 𝑘𝐷𝑆 ) finSupp 𝑍 )
Assertion mptscmfsupp0 ( 𝜑 → ( 𝑘𝐷 ↦ ( 𝑆 𝑊 ) ) finSupp 0 )

Proof

Step Hyp Ref Expression
1 mptscmfsupp0.d ( 𝜑𝐷𝑉 )
2 mptscmfsupp0.q ( 𝜑𝑄 ∈ LMod )
3 mptscmfsupp0.r ( 𝜑𝑅 = ( Scalar ‘ 𝑄 ) )
4 mptscmfsupp0.k 𝐾 = ( Base ‘ 𝑄 )
5 mptscmfsupp0.s ( ( 𝜑𝑘𝐷 ) → 𝑆𝐵 )
6 mptscmfsupp0.w ( ( 𝜑𝑘𝐷 ) → 𝑊𝐾 )
7 mptscmfsupp0.0 0 = ( 0g𝑄 )
8 mptscmfsupp0.z 𝑍 = ( 0g𝑅 )
9 mptscmfsupp0.m = ( ·𝑠𝑄 )
10 mptscmfsupp0.f ( 𝜑 → ( 𝑘𝐷𝑆 ) finSupp 𝑍 )
11 1 mptexd ( 𝜑 → ( 𝑘𝐷 ↦ ( 𝑆 𝑊 ) ) ∈ V )
12 funmpt Fun ( 𝑘𝐷 ↦ ( 𝑆 𝑊 ) )
13 12 a1i ( 𝜑 → Fun ( 𝑘𝐷 ↦ ( 𝑆 𝑊 ) ) )
14 7 fvexi 0 ∈ V
15 14 a1i ( 𝜑0 ∈ V )
16 10 fsuppimpd ( 𝜑 → ( ( 𝑘𝐷𝑆 ) supp 𝑍 ) ∈ Fin )
17 simpr ( ( 𝜑𝑑𝐷 ) → 𝑑𝐷 )
18 5 ralrimiva ( 𝜑 → ∀ 𝑘𝐷 𝑆𝐵 )
19 18 adantr ( ( 𝜑𝑑𝐷 ) → ∀ 𝑘𝐷 𝑆𝐵 )
20 rspcsbela ( ( 𝑑𝐷 ∧ ∀ 𝑘𝐷 𝑆𝐵 ) → 𝑑 / 𝑘 𝑆𝐵 )
21 17 19 20 syl2anc ( ( 𝜑𝑑𝐷 ) → 𝑑 / 𝑘 𝑆𝐵 )
22 eqid ( 𝑘𝐷𝑆 ) = ( 𝑘𝐷𝑆 )
23 22 fvmpts ( ( 𝑑𝐷 𝑑 / 𝑘 𝑆𝐵 ) → ( ( 𝑘𝐷𝑆 ) ‘ 𝑑 ) = 𝑑 / 𝑘 𝑆 )
24 17 21 23 syl2anc ( ( 𝜑𝑑𝐷 ) → ( ( 𝑘𝐷𝑆 ) ‘ 𝑑 ) = 𝑑 / 𝑘 𝑆 )
25 24 eqeq1d ( ( 𝜑𝑑𝐷 ) → ( ( ( 𝑘𝐷𝑆 ) ‘ 𝑑 ) = 𝑍 𝑑 / 𝑘 𝑆 = 𝑍 ) )
26 oveq1 ( 𝑑 / 𝑘 𝑆 = 𝑍 → ( 𝑑 / 𝑘 𝑆 𝑑 / 𝑘 𝑊 ) = ( 𝑍 𝑑 / 𝑘 𝑊 ) )
27 3 adantr ( ( 𝜑𝑑𝐷 ) → 𝑅 = ( Scalar ‘ 𝑄 ) )
28 27 fveq2d ( ( 𝜑𝑑𝐷 ) → ( 0g𝑅 ) = ( 0g ‘ ( Scalar ‘ 𝑄 ) ) )
29 8 28 eqtrid ( ( 𝜑𝑑𝐷 ) → 𝑍 = ( 0g ‘ ( Scalar ‘ 𝑄 ) ) )
30 29 oveq1d ( ( 𝜑𝑑𝐷 ) → ( 𝑍 𝑑 / 𝑘 𝑊 ) = ( ( 0g ‘ ( Scalar ‘ 𝑄 ) ) 𝑑 / 𝑘 𝑊 ) )
31 2 adantr ( ( 𝜑𝑑𝐷 ) → 𝑄 ∈ LMod )
32 6 ralrimiva ( 𝜑 → ∀ 𝑘𝐷 𝑊𝐾 )
33 32 adantr ( ( 𝜑𝑑𝐷 ) → ∀ 𝑘𝐷 𝑊𝐾 )
34 rspcsbela ( ( 𝑑𝐷 ∧ ∀ 𝑘𝐷 𝑊𝐾 ) → 𝑑 / 𝑘 𝑊𝐾 )
35 17 33 34 syl2anc ( ( 𝜑𝑑𝐷 ) → 𝑑 / 𝑘 𝑊𝐾 )
36 eqid ( Scalar ‘ 𝑄 ) = ( Scalar ‘ 𝑄 )
37 eqid ( 0g ‘ ( Scalar ‘ 𝑄 ) ) = ( 0g ‘ ( Scalar ‘ 𝑄 ) )
38 4 36 9 37 7 lmod0vs ( ( 𝑄 ∈ LMod ∧ 𝑑 / 𝑘 𝑊𝐾 ) → ( ( 0g ‘ ( Scalar ‘ 𝑄 ) ) 𝑑 / 𝑘 𝑊 ) = 0 )
39 31 35 38 syl2anc ( ( 𝜑𝑑𝐷 ) → ( ( 0g ‘ ( Scalar ‘ 𝑄 ) ) 𝑑 / 𝑘 𝑊 ) = 0 )
40 30 39 eqtrd ( ( 𝜑𝑑𝐷 ) → ( 𝑍 𝑑 / 𝑘 𝑊 ) = 0 )
41 26 40 sylan9eqr ( ( ( 𝜑𝑑𝐷 ) ∧ 𝑑 / 𝑘 𝑆 = 𝑍 ) → ( 𝑑 / 𝑘 𝑆 𝑑 / 𝑘 𝑊 ) = 0 )
42 csbov12g ( 𝑑𝐷 𝑑 / 𝑘 ( 𝑆 𝑊 ) = ( 𝑑 / 𝑘 𝑆 𝑑 / 𝑘 𝑊 ) )
43 42 adantl ( ( 𝜑𝑑𝐷 ) → 𝑑 / 𝑘 ( 𝑆 𝑊 ) = ( 𝑑 / 𝑘 𝑆 𝑑 / 𝑘 𝑊 ) )
44 ovex ( 𝑑 / 𝑘 𝑆 𝑑 / 𝑘 𝑊 ) ∈ V
45 43 44 eqeltrdi ( ( 𝜑𝑑𝐷 ) → 𝑑 / 𝑘 ( 𝑆 𝑊 ) ∈ V )
46 eqid ( 𝑘𝐷 ↦ ( 𝑆 𝑊 ) ) = ( 𝑘𝐷 ↦ ( 𝑆 𝑊 ) )
47 46 fvmpts ( ( 𝑑𝐷 𝑑 / 𝑘 ( 𝑆 𝑊 ) ∈ V ) → ( ( 𝑘𝐷 ↦ ( 𝑆 𝑊 ) ) ‘ 𝑑 ) = 𝑑 / 𝑘 ( 𝑆 𝑊 ) )
48 17 45 47 syl2anc ( ( 𝜑𝑑𝐷 ) → ( ( 𝑘𝐷 ↦ ( 𝑆 𝑊 ) ) ‘ 𝑑 ) = 𝑑 / 𝑘 ( 𝑆 𝑊 ) )
49 48 43 eqtrd ( ( 𝜑𝑑𝐷 ) → ( ( 𝑘𝐷 ↦ ( 𝑆 𝑊 ) ) ‘ 𝑑 ) = ( 𝑑 / 𝑘 𝑆 𝑑 / 𝑘 𝑊 ) )
50 49 eqeq1d ( ( 𝜑𝑑𝐷 ) → ( ( ( 𝑘𝐷 ↦ ( 𝑆 𝑊 ) ) ‘ 𝑑 ) = 0 ↔ ( 𝑑 / 𝑘 𝑆 𝑑 / 𝑘 𝑊 ) = 0 ) )
51 50 adantr ( ( ( 𝜑𝑑𝐷 ) ∧ 𝑑 / 𝑘 𝑆 = 𝑍 ) → ( ( ( 𝑘𝐷 ↦ ( 𝑆 𝑊 ) ) ‘ 𝑑 ) = 0 ↔ ( 𝑑 / 𝑘 𝑆 𝑑 / 𝑘 𝑊 ) = 0 ) )
52 41 51 mpbird ( ( ( 𝜑𝑑𝐷 ) ∧ 𝑑 / 𝑘 𝑆 = 𝑍 ) → ( ( 𝑘𝐷 ↦ ( 𝑆 𝑊 ) ) ‘ 𝑑 ) = 0 )
53 52 ex ( ( 𝜑𝑑𝐷 ) → ( 𝑑 / 𝑘 𝑆 = 𝑍 → ( ( 𝑘𝐷 ↦ ( 𝑆 𝑊 ) ) ‘ 𝑑 ) = 0 ) )
54 25 53 sylbid ( ( 𝜑𝑑𝐷 ) → ( ( ( 𝑘𝐷𝑆 ) ‘ 𝑑 ) = 𝑍 → ( ( 𝑘𝐷 ↦ ( 𝑆 𝑊 ) ) ‘ 𝑑 ) = 0 ) )
55 54 necon3d ( ( 𝜑𝑑𝐷 ) → ( ( ( 𝑘𝐷 ↦ ( 𝑆 𝑊 ) ) ‘ 𝑑 ) ≠ 0 → ( ( 𝑘𝐷𝑆 ) ‘ 𝑑 ) ≠ 𝑍 ) )
56 55 ss2rabdv ( 𝜑 → { 𝑑𝐷 ∣ ( ( 𝑘𝐷 ↦ ( 𝑆 𝑊 ) ) ‘ 𝑑 ) ≠ 0 } ⊆ { 𝑑𝐷 ∣ ( ( 𝑘𝐷𝑆 ) ‘ 𝑑 ) ≠ 𝑍 } )
57 ovex ( 𝑆 𝑊 ) ∈ V
58 57 rgenw 𝑘𝐷 ( 𝑆 𝑊 ) ∈ V
59 46 fnmpt ( ∀ 𝑘𝐷 ( 𝑆 𝑊 ) ∈ V → ( 𝑘𝐷 ↦ ( 𝑆 𝑊 ) ) Fn 𝐷 )
60 58 59 mp1i ( 𝜑 → ( 𝑘𝐷 ↦ ( 𝑆 𝑊 ) ) Fn 𝐷 )
61 suppvalfn ( ( ( 𝑘𝐷 ↦ ( 𝑆 𝑊 ) ) Fn 𝐷𝐷𝑉0 ∈ V ) → ( ( 𝑘𝐷 ↦ ( 𝑆 𝑊 ) ) supp 0 ) = { 𝑑𝐷 ∣ ( ( 𝑘𝐷 ↦ ( 𝑆 𝑊 ) ) ‘ 𝑑 ) ≠ 0 } )
62 60 1 15 61 syl3anc ( 𝜑 → ( ( 𝑘𝐷 ↦ ( 𝑆 𝑊 ) ) supp 0 ) = { 𝑑𝐷 ∣ ( ( 𝑘𝐷 ↦ ( 𝑆 𝑊 ) ) ‘ 𝑑 ) ≠ 0 } )
63 22 fnmpt ( ∀ 𝑘𝐷 𝑆𝐵 → ( 𝑘𝐷𝑆 ) Fn 𝐷 )
64 18 63 syl ( 𝜑 → ( 𝑘𝐷𝑆 ) Fn 𝐷 )
65 8 fvexi 𝑍 ∈ V
66 65 a1i ( 𝜑𝑍 ∈ V )
67 suppvalfn ( ( ( 𝑘𝐷𝑆 ) Fn 𝐷𝐷𝑉𝑍 ∈ V ) → ( ( 𝑘𝐷𝑆 ) supp 𝑍 ) = { 𝑑𝐷 ∣ ( ( 𝑘𝐷𝑆 ) ‘ 𝑑 ) ≠ 𝑍 } )
68 64 1 66 67 syl3anc ( 𝜑 → ( ( 𝑘𝐷𝑆 ) supp 𝑍 ) = { 𝑑𝐷 ∣ ( ( 𝑘𝐷𝑆 ) ‘ 𝑑 ) ≠ 𝑍 } )
69 56 62 68 3sstr4d ( 𝜑 → ( ( 𝑘𝐷 ↦ ( 𝑆 𝑊 ) ) supp 0 ) ⊆ ( ( 𝑘𝐷𝑆 ) supp 𝑍 ) )
70 suppssfifsupp ( ( ( ( 𝑘𝐷 ↦ ( 𝑆 𝑊 ) ) ∈ V ∧ Fun ( 𝑘𝐷 ↦ ( 𝑆 𝑊 ) ) ∧ 0 ∈ V ) ∧ ( ( ( 𝑘𝐷𝑆 ) supp 𝑍 ) ∈ Fin ∧ ( ( 𝑘𝐷 ↦ ( 𝑆 𝑊 ) ) supp 0 ) ⊆ ( ( 𝑘𝐷𝑆 ) supp 𝑍 ) ) ) → ( 𝑘𝐷 ↦ ( 𝑆 𝑊 ) ) finSupp 0 )
71 11 13 15 16 69 70 syl32anc ( 𝜑 → ( 𝑘𝐷 ↦ ( 𝑆 𝑊 ) ) finSupp 0 )