Step |
Hyp |
Ref |
Expression |
1 |
|
mptscmfsupp0.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) |
2 |
|
mptscmfsupp0.q |
⊢ ( 𝜑 → 𝑄 ∈ LMod ) |
3 |
|
mptscmfsupp0.r |
⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑄 ) ) |
4 |
|
mptscmfsupp0.k |
⊢ 𝐾 = ( Base ‘ 𝑄 ) |
5 |
|
mptscmfsupp0.s |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → 𝑆 ∈ 𝐵 ) |
6 |
|
mptscmfsupp0.w |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → 𝑊 ∈ 𝐾 ) |
7 |
|
mptscmfsupp0.0 |
⊢ 0 = ( 0g ‘ 𝑄 ) |
8 |
|
mptscmfsupp0.z |
⊢ 𝑍 = ( 0g ‘ 𝑅 ) |
9 |
|
mptscmfsupp0.m |
⊢ ∗ = ( ·𝑠 ‘ 𝑄 ) |
10 |
|
mptscmfsupp0.f |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐷 ↦ 𝑆 ) finSupp 𝑍 ) |
11 |
1
|
mptexd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐷 ↦ ( 𝑆 ∗ 𝑊 ) ) ∈ V ) |
12 |
|
funmpt |
⊢ Fun ( 𝑘 ∈ 𝐷 ↦ ( 𝑆 ∗ 𝑊 ) ) |
13 |
12
|
a1i |
⊢ ( 𝜑 → Fun ( 𝑘 ∈ 𝐷 ↦ ( 𝑆 ∗ 𝑊 ) ) ) |
14 |
7
|
fvexi |
⊢ 0 ∈ V |
15 |
14
|
a1i |
⊢ ( 𝜑 → 0 ∈ V ) |
16 |
10
|
fsuppimpd |
⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝐷 ↦ 𝑆 ) supp 𝑍 ) ∈ Fin ) |
17 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) → 𝑑 ∈ 𝐷 ) |
18 |
5
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐷 𝑆 ∈ 𝐵 ) |
19 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) → ∀ 𝑘 ∈ 𝐷 𝑆 ∈ 𝐵 ) |
20 |
|
rspcsbela |
⊢ ( ( 𝑑 ∈ 𝐷 ∧ ∀ 𝑘 ∈ 𝐷 𝑆 ∈ 𝐵 ) → ⦋ 𝑑 / 𝑘 ⦌ 𝑆 ∈ 𝐵 ) |
21 |
17 19 20
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) → ⦋ 𝑑 / 𝑘 ⦌ 𝑆 ∈ 𝐵 ) |
22 |
|
eqid |
⊢ ( 𝑘 ∈ 𝐷 ↦ 𝑆 ) = ( 𝑘 ∈ 𝐷 ↦ 𝑆 ) |
23 |
22
|
fvmpts |
⊢ ( ( 𝑑 ∈ 𝐷 ∧ ⦋ 𝑑 / 𝑘 ⦌ 𝑆 ∈ 𝐵 ) → ( ( 𝑘 ∈ 𝐷 ↦ 𝑆 ) ‘ 𝑑 ) = ⦋ 𝑑 / 𝑘 ⦌ 𝑆 ) |
24 |
17 21 23
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) → ( ( 𝑘 ∈ 𝐷 ↦ 𝑆 ) ‘ 𝑑 ) = ⦋ 𝑑 / 𝑘 ⦌ 𝑆 ) |
25 |
24
|
eqeq1d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) → ( ( ( 𝑘 ∈ 𝐷 ↦ 𝑆 ) ‘ 𝑑 ) = 𝑍 ↔ ⦋ 𝑑 / 𝑘 ⦌ 𝑆 = 𝑍 ) ) |
26 |
|
oveq1 |
⊢ ( ⦋ 𝑑 / 𝑘 ⦌ 𝑆 = 𝑍 → ( ⦋ 𝑑 / 𝑘 ⦌ 𝑆 ∗ ⦋ 𝑑 / 𝑘 ⦌ 𝑊 ) = ( 𝑍 ∗ ⦋ 𝑑 / 𝑘 ⦌ 𝑊 ) ) |
27 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) → 𝑅 = ( Scalar ‘ 𝑄 ) ) |
28 |
27
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) → ( 0g ‘ 𝑅 ) = ( 0g ‘ ( Scalar ‘ 𝑄 ) ) ) |
29 |
8 28
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) → 𝑍 = ( 0g ‘ ( Scalar ‘ 𝑄 ) ) ) |
30 |
29
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) → ( 𝑍 ∗ ⦋ 𝑑 / 𝑘 ⦌ 𝑊 ) = ( ( 0g ‘ ( Scalar ‘ 𝑄 ) ) ∗ ⦋ 𝑑 / 𝑘 ⦌ 𝑊 ) ) |
31 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) → 𝑄 ∈ LMod ) |
32 |
6
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐷 𝑊 ∈ 𝐾 ) |
33 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) → ∀ 𝑘 ∈ 𝐷 𝑊 ∈ 𝐾 ) |
34 |
|
rspcsbela |
⊢ ( ( 𝑑 ∈ 𝐷 ∧ ∀ 𝑘 ∈ 𝐷 𝑊 ∈ 𝐾 ) → ⦋ 𝑑 / 𝑘 ⦌ 𝑊 ∈ 𝐾 ) |
35 |
17 33 34
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) → ⦋ 𝑑 / 𝑘 ⦌ 𝑊 ∈ 𝐾 ) |
36 |
|
eqid |
⊢ ( Scalar ‘ 𝑄 ) = ( Scalar ‘ 𝑄 ) |
37 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑄 ) ) = ( 0g ‘ ( Scalar ‘ 𝑄 ) ) |
38 |
4 36 9 37 7
|
lmod0vs |
⊢ ( ( 𝑄 ∈ LMod ∧ ⦋ 𝑑 / 𝑘 ⦌ 𝑊 ∈ 𝐾 ) → ( ( 0g ‘ ( Scalar ‘ 𝑄 ) ) ∗ ⦋ 𝑑 / 𝑘 ⦌ 𝑊 ) = 0 ) |
39 |
31 35 38
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) → ( ( 0g ‘ ( Scalar ‘ 𝑄 ) ) ∗ ⦋ 𝑑 / 𝑘 ⦌ 𝑊 ) = 0 ) |
40 |
30 39
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) → ( 𝑍 ∗ ⦋ 𝑑 / 𝑘 ⦌ 𝑊 ) = 0 ) |
41 |
26 40
|
sylan9eqr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ ⦋ 𝑑 / 𝑘 ⦌ 𝑆 = 𝑍 ) → ( ⦋ 𝑑 / 𝑘 ⦌ 𝑆 ∗ ⦋ 𝑑 / 𝑘 ⦌ 𝑊 ) = 0 ) |
42 |
|
csbov12g |
⊢ ( 𝑑 ∈ 𝐷 → ⦋ 𝑑 / 𝑘 ⦌ ( 𝑆 ∗ 𝑊 ) = ( ⦋ 𝑑 / 𝑘 ⦌ 𝑆 ∗ ⦋ 𝑑 / 𝑘 ⦌ 𝑊 ) ) |
43 |
42
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) → ⦋ 𝑑 / 𝑘 ⦌ ( 𝑆 ∗ 𝑊 ) = ( ⦋ 𝑑 / 𝑘 ⦌ 𝑆 ∗ ⦋ 𝑑 / 𝑘 ⦌ 𝑊 ) ) |
44 |
|
ovex |
⊢ ( ⦋ 𝑑 / 𝑘 ⦌ 𝑆 ∗ ⦋ 𝑑 / 𝑘 ⦌ 𝑊 ) ∈ V |
45 |
43 44
|
eqeltrdi |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) → ⦋ 𝑑 / 𝑘 ⦌ ( 𝑆 ∗ 𝑊 ) ∈ V ) |
46 |
|
eqid |
⊢ ( 𝑘 ∈ 𝐷 ↦ ( 𝑆 ∗ 𝑊 ) ) = ( 𝑘 ∈ 𝐷 ↦ ( 𝑆 ∗ 𝑊 ) ) |
47 |
46
|
fvmpts |
⊢ ( ( 𝑑 ∈ 𝐷 ∧ ⦋ 𝑑 / 𝑘 ⦌ ( 𝑆 ∗ 𝑊 ) ∈ V ) → ( ( 𝑘 ∈ 𝐷 ↦ ( 𝑆 ∗ 𝑊 ) ) ‘ 𝑑 ) = ⦋ 𝑑 / 𝑘 ⦌ ( 𝑆 ∗ 𝑊 ) ) |
48 |
17 45 47
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) → ( ( 𝑘 ∈ 𝐷 ↦ ( 𝑆 ∗ 𝑊 ) ) ‘ 𝑑 ) = ⦋ 𝑑 / 𝑘 ⦌ ( 𝑆 ∗ 𝑊 ) ) |
49 |
48 43
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) → ( ( 𝑘 ∈ 𝐷 ↦ ( 𝑆 ∗ 𝑊 ) ) ‘ 𝑑 ) = ( ⦋ 𝑑 / 𝑘 ⦌ 𝑆 ∗ ⦋ 𝑑 / 𝑘 ⦌ 𝑊 ) ) |
50 |
49
|
eqeq1d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) → ( ( ( 𝑘 ∈ 𝐷 ↦ ( 𝑆 ∗ 𝑊 ) ) ‘ 𝑑 ) = 0 ↔ ( ⦋ 𝑑 / 𝑘 ⦌ 𝑆 ∗ ⦋ 𝑑 / 𝑘 ⦌ 𝑊 ) = 0 ) ) |
51 |
50
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ ⦋ 𝑑 / 𝑘 ⦌ 𝑆 = 𝑍 ) → ( ( ( 𝑘 ∈ 𝐷 ↦ ( 𝑆 ∗ 𝑊 ) ) ‘ 𝑑 ) = 0 ↔ ( ⦋ 𝑑 / 𝑘 ⦌ 𝑆 ∗ ⦋ 𝑑 / 𝑘 ⦌ 𝑊 ) = 0 ) ) |
52 |
41 51
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) ∧ ⦋ 𝑑 / 𝑘 ⦌ 𝑆 = 𝑍 ) → ( ( 𝑘 ∈ 𝐷 ↦ ( 𝑆 ∗ 𝑊 ) ) ‘ 𝑑 ) = 0 ) |
53 |
52
|
ex |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) → ( ⦋ 𝑑 / 𝑘 ⦌ 𝑆 = 𝑍 → ( ( 𝑘 ∈ 𝐷 ↦ ( 𝑆 ∗ 𝑊 ) ) ‘ 𝑑 ) = 0 ) ) |
54 |
25 53
|
sylbid |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) → ( ( ( 𝑘 ∈ 𝐷 ↦ 𝑆 ) ‘ 𝑑 ) = 𝑍 → ( ( 𝑘 ∈ 𝐷 ↦ ( 𝑆 ∗ 𝑊 ) ) ‘ 𝑑 ) = 0 ) ) |
55 |
54
|
necon3d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) → ( ( ( 𝑘 ∈ 𝐷 ↦ ( 𝑆 ∗ 𝑊 ) ) ‘ 𝑑 ) ≠ 0 → ( ( 𝑘 ∈ 𝐷 ↦ 𝑆 ) ‘ 𝑑 ) ≠ 𝑍 ) ) |
56 |
55
|
ss2rabdv |
⊢ ( 𝜑 → { 𝑑 ∈ 𝐷 ∣ ( ( 𝑘 ∈ 𝐷 ↦ ( 𝑆 ∗ 𝑊 ) ) ‘ 𝑑 ) ≠ 0 } ⊆ { 𝑑 ∈ 𝐷 ∣ ( ( 𝑘 ∈ 𝐷 ↦ 𝑆 ) ‘ 𝑑 ) ≠ 𝑍 } ) |
57 |
|
ovex |
⊢ ( 𝑆 ∗ 𝑊 ) ∈ V |
58 |
57
|
rgenw |
⊢ ∀ 𝑘 ∈ 𝐷 ( 𝑆 ∗ 𝑊 ) ∈ V |
59 |
46
|
fnmpt |
⊢ ( ∀ 𝑘 ∈ 𝐷 ( 𝑆 ∗ 𝑊 ) ∈ V → ( 𝑘 ∈ 𝐷 ↦ ( 𝑆 ∗ 𝑊 ) ) Fn 𝐷 ) |
60 |
58 59
|
mp1i |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐷 ↦ ( 𝑆 ∗ 𝑊 ) ) Fn 𝐷 ) |
61 |
|
suppvalfn |
⊢ ( ( ( 𝑘 ∈ 𝐷 ↦ ( 𝑆 ∗ 𝑊 ) ) Fn 𝐷 ∧ 𝐷 ∈ 𝑉 ∧ 0 ∈ V ) → ( ( 𝑘 ∈ 𝐷 ↦ ( 𝑆 ∗ 𝑊 ) ) supp 0 ) = { 𝑑 ∈ 𝐷 ∣ ( ( 𝑘 ∈ 𝐷 ↦ ( 𝑆 ∗ 𝑊 ) ) ‘ 𝑑 ) ≠ 0 } ) |
62 |
60 1 15 61
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝐷 ↦ ( 𝑆 ∗ 𝑊 ) ) supp 0 ) = { 𝑑 ∈ 𝐷 ∣ ( ( 𝑘 ∈ 𝐷 ↦ ( 𝑆 ∗ 𝑊 ) ) ‘ 𝑑 ) ≠ 0 } ) |
63 |
22
|
fnmpt |
⊢ ( ∀ 𝑘 ∈ 𝐷 𝑆 ∈ 𝐵 → ( 𝑘 ∈ 𝐷 ↦ 𝑆 ) Fn 𝐷 ) |
64 |
18 63
|
syl |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐷 ↦ 𝑆 ) Fn 𝐷 ) |
65 |
8
|
fvexi |
⊢ 𝑍 ∈ V |
66 |
65
|
a1i |
⊢ ( 𝜑 → 𝑍 ∈ V ) |
67 |
|
suppvalfn |
⊢ ( ( ( 𝑘 ∈ 𝐷 ↦ 𝑆 ) Fn 𝐷 ∧ 𝐷 ∈ 𝑉 ∧ 𝑍 ∈ V ) → ( ( 𝑘 ∈ 𝐷 ↦ 𝑆 ) supp 𝑍 ) = { 𝑑 ∈ 𝐷 ∣ ( ( 𝑘 ∈ 𝐷 ↦ 𝑆 ) ‘ 𝑑 ) ≠ 𝑍 } ) |
68 |
64 1 66 67
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝐷 ↦ 𝑆 ) supp 𝑍 ) = { 𝑑 ∈ 𝐷 ∣ ( ( 𝑘 ∈ 𝐷 ↦ 𝑆 ) ‘ 𝑑 ) ≠ 𝑍 } ) |
69 |
56 62 68
|
3sstr4d |
⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝐷 ↦ ( 𝑆 ∗ 𝑊 ) ) supp 0 ) ⊆ ( ( 𝑘 ∈ 𝐷 ↦ 𝑆 ) supp 𝑍 ) ) |
70 |
|
suppssfifsupp |
⊢ ( ( ( ( 𝑘 ∈ 𝐷 ↦ ( 𝑆 ∗ 𝑊 ) ) ∈ V ∧ Fun ( 𝑘 ∈ 𝐷 ↦ ( 𝑆 ∗ 𝑊 ) ) ∧ 0 ∈ V ) ∧ ( ( ( 𝑘 ∈ 𝐷 ↦ 𝑆 ) supp 𝑍 ) ∈ Fin ∧ ( ( 𝑘 ∈ 𝐷 ↦ ( 𝑆 ∗ 𝑊 ) ) supp 0 ) ⊆ ( ( 𝑘 ∈ 𝐷 ↦ 𝑆 ) supp 𝑍 ) ) ) → ( 𝑘 ∈ 𝐷 ↦ ( 𝑆 ∗ 𝑊 ) ) finSupp 0 ) |
71 |
11 13 15 16 69 70
|
syl32anc |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐷 ↦ ( 𝑆 ∗ 𝑊 ) ) finSupp 0 ) |