Description: A function mapping to a scalar product in which one factor is finitely supported is finitely supported. Formerly part of proof for ply1coe . (Contributed by Stefan O'Rear, 21-Mar-2015) (Revised by AV, 8-Aug-2019) (Proof shortened by AV, 18-Oct-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mptscmfsuppd.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
mptscmfsuppd.s | ⊢ 𝑆 = ( Scalar ‘ 𝑃 ) | ||
mptscmfsuppd.n | ⊢ · = ( ·𝑠 ‘ 𝑃 ) | ||
mptscmfsuppd.p | ⊢ ( 𝜑 → 𝑃 ∈ LMod ) | ||
mptscmfsuppd.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | ||
mptscmfsuppd.z | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 𝑍 ∈ 𝐵 ) | ||
mptscmfsuppd.a | ⊢ ( 𝜑 → 𝐴 : 𝑋 ⟶ 𝑌 ) | ||
mptscmfsuppd.f | ⊢ ( 𝜑 → 𝐴 finSupp ( 0g ‘ 𝑆 ) ) | ||
Assertion | mptscmfsuppd | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑘 ) · 𝑍 ) ) finSupp ( 0g ‘ 𝑃 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mptscmfsuppd.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
2 | mptscmfsuppd.s | ⊢ 𝑆 = ( Scalar ‘ 𝑃 ) | |
3 | mptscmfsuppd.n | ⊢ · = ( ·𝑠 ‘ 𝑃 ) | |
4 | mptscmfsuppd.p | ⊢ ( 𝜑 → 𝑃 ∈ LMod ) | |
5 | mptscmfsuppd.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
6 | mptscmfsuppd.z | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 𝑍 ∈ 𝐵 ) | |
7 | mptscmfsuppd.a | ⊢ ( 𝜑 → 𝐴 : 𝑋 ⟶ 𝑌 ) | |
8 | mptscmfsuppd.f | ⊢ ( 𝜑 → 𝐴 finSupp ( 0g ‘ 𝑆 ) ) | |
9 | 2 | a1i | ⊢ ( 𝜑 → 𝑆 = ( Scalar ‘ 𝑃 ) ) |
10 | fvexd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐴 ‘ 𝑘 ) ∈ V ) | |
11 | eqid | ⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) | |
12 | eqid | ⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) | |
13 | 7 | feqmptd | ⊢ ( 𝜑 → 𝐴 = ( 𝑘 ∈ 𝑋 ↦ ( 𝐴 ‘ 𝑘 ) ) ) |
14 | 13 8 | eqbrtrrd | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝑋 ↦ ( 𝐴 ‘ 𝑘 ) ) finSupp ( 0g ‘ 𝑆 ) ) |
15 | 5 4 9 1 10 6 11 12 3 14 | mptscmfsupp0 | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑘 ) · 𝑍 ) ) finSupp ( 0g ‘ 𝑃 ) ) |