Description: Deduce subset relation of mapping-to function graphs from a subset relation of domains. Alternative proof of mptss . (Contributed by Thierry Arnoux, 30-May-2020) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | mptssALT | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ⊆ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) | |
2 | 1 | anim1d | ⊢ ( 𝐴 ⊆ 𝐵 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) → ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐶 ) ) ) |
3 | 2 | ssopab2dv | ⊢ ( 𝐴 ⊆ 𝐵 → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) } ⊆ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐶 ) } ) |
4 | df-mpt | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) } | |
5 | df-mpt | ⊢ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐶 ) } | |
6 | 3 4 5 | 3sstr4g | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ⊆ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ) |