Step |
Hyp |
Ref |
Expression |
1 |
|
mptssid.1 |
⊢ Ⅎ 𝑥 𝐴 |
2 |
|
mptssid.2 |
⊢ 𝐶 = { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V } |
3 |
|
eqvisset |
⊢ ( 𝑦 = 𝐵 → 𝐵 ∈ V ) |
4 |
3
|
anim2i |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ V ) ) |
5 |
|
rabid |
⊢ ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V } ↔ ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ V ) ) |
6 |
4 5
|
sylibr |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) → 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V } ) |
7 |
6 2
|
eleqtrrdi |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) → 𝑥 ∈ 𝐶 ) |
8 |
|
simpr |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) → 𝑦 = 𝐵 ) |
9 |
7 8
|
jca |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐵 ) ) |
10 |
1
|
ssrab2f |
⊢ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V } ⊆ 𝐴 |
11 |
2 10
|
eqsstri |
⊢ 𝐶 ⊆ 𝐴 |
12 |
11
|
sseli |
⊢ ( 𝑥 ∈ 𝐶 → 𝑥 ∈ 𝐴 ) |
13 |
12
|
anim1i |
⊢ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐵 ) → ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) ) |
14 |
9 13
|
impbii |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) ↔ ( 𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐵 ) ) |
15 |
14
|
opabbii |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐵 ) } |
16 |
|
df-mpt |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } |
17 |
|
df-mpt |
⊢ ( 𝑥 ∈ 𝐶 ↦ 𝐵 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐵 ) } |
18 |
15 16 17
|
3eqtr4i |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐶 ↦ 𝐵 ) |