Metamath Proof Explorer


Theorem mptssid

Description: The mapping operation expressed with its actual domain. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses mptssid.1 𝑥 𝐴
mptssid.2 𝐶 = { 𝑥𝐴𝐵 ∈ V }
Assertion mptssid ( 𝑥𝐴𝐵 ) = ( 𝑥𝐶𝐵 )

Proof

Step Hyp Ref Expression
1 mptssid.1 𝑥 𝐴
2 mptssid.2 𝐶 = { 𝑥𝐴𝐵 ∈ V }
3 eqvisset ( 𝑦 = 𝐵𝐵 ∈ V )
4 3 anim2i ( ( 𝑥𝐴𝑦 = 𝐵 ) → ( 𝑥𝐴𝐵 ∈ V ) )
5 rabid ( 𝑥 ∈ { 𝑥𝐴𝐵 ∈ V } ↔ ( 𝑥𝐴𝐵 ∈ V ) )
6 4 5 sylibr ( ( 𝑥𝐴𝑦 = 𝐵 ) → 𝑥 ∈ { 𝑥𝐴𝐵 ∈ V } )
7 6 2 eleqtrrdi ( ( 𝑥𝐴𝑦 = 𝐵 ) → 𝑥𝐶 )
8 simpr ( ( 𝑥𝐴𝑦 = 𝐵 ) → 𝑦 = 𝐵 )
9 7 8 jca ( ( 𝑥𝐴𝑦 = 𝐵 ) → ( 𝑥𝐶𝑦 = 𝐵 ) )
10 1 ssrab2f { 𝑥𝐴𝐵 ∈ V } ⊆ 𝐴
11 2 10 eqsstri 𝐶𝐴
12 11 sseli ( 𝑥𝐶𝑥𝐴 )
13 12 anim1i ( ( 𝑥𝐶𝑦 = 𝐵 ) → ( 𝑥𝐴𝑦 = 𝐵 ) )
14 9 13 impbii ( ( 𝑥𝐴𝑦 = 𝐵 ) ↔ ( 𝑥𝐶𝑦 = 𝐵 ) )
15 14 opabbii { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝑦 = 𝐵 ) } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐶𝑦 = 𝐵 ) }
16 df-mpt ( 𝑥𝐴𝐵 ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝑦 = 𝐵 ) }
17 df-mpt ( 𝑥𝐶𝐵 ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐶𝑦 = 𝐵 ) }
18 15 16 17 3eqtr4i ( 𝑥𝐴𝐵 ) = ( 𝑥𝐶𝐵 )