| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mptsuppdifd.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
| 2 |
|
mptsuppdifd.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 3 |
|
mptsuppdifd.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝑊 ) |
| 4 |
|
mptsuppd.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑈 ) |
| 5 |
1 2 3
|
mptsuppdifd |
⊢ ( 𝜑 → ( 𝐹 supp 𝑍 ) = { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( V ∖ { 𝑍 } ) } ) |
| 6 |
|
eldifsn |
⊢ ( 𝐵 ∈ ( V ∖ { 𝑍 } ) ↔ ( 𝐵 ∈ V ∧ 𝐵 ≠ 𝑍 ) ) |
| 7 |
4
|
elexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ V ) |
| 8 |
7
|
biantrurd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 ≠ 𝑍 ↔ ( 𝐵 ∈ V ∧ 𝐵 ≠ 𝑍 ) ) ) |
| 9 |
6 8
|
bitr4id |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 ∈ ( V ∖ { 𝑍 } ) ↔ 𝐵 ≠ 𝑍 ) ) |
| 10 |
9
|
rabbidva |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( V ∖ { 𝑍 } ) } = { 𝑥 ∈ 𝐴 ∣ 𝐵 ≠ 𝑍 } ) |
| 11 |
5 10
|
eqtrd |
⊢ ( 𝜑 → ( 𝐹 supp 𝑍 ) = { 𝑥 ∈ 𝐴 ∣ 𝐵 ≠ 𝑍 } ) |