Metamath Proof Explorer


Theorem mptsuppd

Description: The support of a function in maps-to notation. (Contributed by AV, 10-Apr-2019) (Revised by AV, 28-May-2019)

Ref Expression
Hypotheses mptsuppdifd.f 𝐹 = ( 𝑥𝐴𝐵 )
mptsuppdifd.a ( 𝜑𝐴𝑉 )
mptsuppdifd.z ( 𝜑𝑍𝑊 )
mptsuppd.b ( ( 𝜑𝑥𝐴 ) → 𝐵𝑈 )
Assertion mptsuppd ( 𝜑 → ( 𝐹 supp 𝑍 ) = { 𝑥𝐴𝐵𝑍 } )

Proof

Step Hyp Ref Expression
1 mptsuppdifd.f 𝐹 = ( 𝑥𝐴𝐵 )
2 mptsuppdifd.a ( 𝜑𝐴𝑉 )
3 mptsuppdifd.z ( 𝜑𝑍𝑊 )
4 mptsuppd.b ( ( 𝜑𝑥𝐴 ) → 𝐵𝑈 )
5 1 2 3 mptsuppdifd ( 𝜑 → ( 𝐹 supp 𝑍 ) = { 𝑥𝐴𝐵 ∈ ( V ∖ { 𝑍 } ) } )
6 eldifsn ( 𝐵 ∈ ( V ∖ { 𝑍 } ) ↔ ( 𝐵 ∈ V ∧ 𝐵𝑍 ) )
7 4 elexd ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ V )
8 7 biantrurd ( ( 𝜑𝑥𝐴 ) → ( 𝐵𝑍 ↔ ( 𝐵 ∈ V ∧ 𝐵𝑍 ) ) )
9 6 8 bitr4id ( ( 𝜑𝑥𝐴 ) → ( 𝐵 ∈ ( V ∖ { 𝑍 } ) ↔ 𝐵𝑍 ) )
10 9 rabbidva ( 𝜑 → { 𝑥𝐴𝐵 ∈ ( V ∖ { 𝑍 } ) } = { 𝑥𝐴𝐵𝑍 } )
11 5 10 eqtrd ( 𝜑 → ( 𝐹 supp 𝑍 ) = { 𝑥𝐴𝐵𝑍 } )