Metamath Proof Explorer


Theorem mrccl

Description: The Moore closure of a set is a closed set. (Contributed by Stefan O'Rear, 31-Jan-2015)

Ref Expression
Hypothesis mrcfval.f 𝐹 = ( mrCls ‘ 𝐶 )
Assertion mrccl ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈𝑋 ) → ( 𝐹𝑈 ) ∈ 𝐶 )

Proof

Step Hyp Ref Expression
1 mrcfval.f 𝐹 = ( mrCls ‘ 𝐶 )
2 1 mrcf ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝐹 : 𝒫 𝑋𝐶 )
3 2 adantr ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈𝑋 ) → 𝐹 : 𝒫 𝑋𝐶 )
4 mre1cl ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝑋𝐶 )
5 elpw2g ( 𝑋𝐶 → ( 𝑈 ∈ 𝒫 𝑋𝑈𝑋 ) )
6 4 5 syl ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( 𝑈 ∈ 𝒫 𝑋𝑈𝑋 ) )
7 6 biimpar ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈𝑋 ) → 𝑈 ∈ 𝒫 𝑋 )
8 3 7 ffvelrnd ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈𝑋 ) → ( 𝐹𝑈 ) ∈ 𝐶 )