Description: The Moore closure of a set is a closed set. (Contributed by Stefan O'Rear, 31-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | mrcfval.f | ⊢ 𝐹 = ( mrCls ‘ 𝐶 ) | |
Assertion | mrccl | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝑋 ) → ( 𝐹 ‘ 𝑈 ) ∈ 𝐶 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mrcfval.f | ⊢ 𝐹 = ( mrCls ‘ 𝐶 ) | |
2 | 1 | mrcf | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝐹 : 𝒫 𝑋 ⟶ 𝐶 ) |
3 | 2 | adantr | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝑋 ) → 𝐹 : 𝒫 𝑋 ⟶ 𝐶 ) |
4 | mre1cl | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝑋 ∈ 𝐶 ) | |
5 | elpw2g | ⊢ ( 𝑋 ∈ 𝐶 → ( 𝑈 ∈ 𝒫 𝑋 ↔ 𝑈 ⊆ 𝑋 ) ) | |
6 | 4 5 | syl | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( 𝑈 ∈ 𝒫 𝑋 ↔ 𝑈 ⊆ 𝑋 ) ) |
7 | 6 | biimpar | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝑋 ) → 𝑈 ∈ 𝒫 𝑋 ) |
8 | 3 7 | ffvelrnd | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝑋 ) → ( 𝐹 ‘ 𝑈 ) ∈ 𝐶 ) |