Description: The Moore closure is a function mapping arbitrary subsets to closed sets. (Contributed by Stefan O'Rear, 31-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | mrcfval.f | ⊢ 𝐹 = ( mrCls ‘ 𝐶 ) | |
Assertion | mrcf | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝐹 : 𝒫 𝑋 ⟶ 𝐶 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mrcfval.f | ⊢ 𝐹 = ( mrCls ‘ 𝐶 ) | |
2 | mrcflem | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( 𝑥 ∈ 𝒫 𝑋 ↦ ∩ { 𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠 } ) : 𝒫 𝑋 ⟶ 𝐶 ) | |
3 | 1 | mrcfval | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝐹 = ( 𝑥 ∈ 𝒫 𝑋 ↦ ∩ { 𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠 } ) ) |
4 | 3 | feq1d | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( 𝐹 : 𝒫 𝑋 ⟶ 𝐶 ↔ ( 𝑥 ∈ 𝒫 𝑋 ↦ ∩ { 𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠 } ) : 𝒫 𝑋 ⟶ 𝐶 ) ) |
5 | 2 4 | mpbird | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝐹 : 𝒫 𝑋 ⟶ 𝐶 ) |