Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ∈ 𝒫 𝑋 ) → 𝐶 ∈ ( Moore ‘ 𝑋 ) ) |
2 |
|
ssrab2 |
⊢ { 𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠 } ⊆ 𝐶 |
3 |
2
|
a1i |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ∈ 𝒫 𝑋 ) → { 𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠 } ⊆ 𝐶 ) |
4 |
|
sseq2 |
⊢ ( 𝑠 = 𝑋 → ( 𝑥 ⊆ 𝑠 ↔ 𝑥 ⊆ 𝑋 ) ) |
5 |
|
mre1cl |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝑋 ∈ 𝐶 ) |
6 |
5
|
adantr |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ∈ 𝒫 𝑋 ) → 𝑋 ∈ 𝐶 ) |
7 |
|
elpwi |
⊢ ( 𝑥 ∈ 𝒫 𝑋 → 𝑥 ⊆ 𝑋 ) |
8 |
7
|
adantl |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ∈ 𝒫 𝑋 ) → 𝑥 ⊆ 𝑋 ) |
9 |
4 6 8
|
elrabd |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ∈ 𝒫 𝑋 ) → 𝑋 ∈ { 𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠 } ) |
10 |
9
|
ne0d |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ∈ 𝒫 𝑋 ) → { 𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠 } ≠ ∅ ) |
11 |
|
mreintcl |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ { 𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠 } ⊆ 𝐶 ∧ { 𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠 } ≠ ∅ ) → ∩ { 𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠 } ∈ 𝐶 ) |
12 |
1 3 10 11
|
syl3anc |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ∈ 𝒫 𝑋 ) → ∩ { 𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠 } ∈ 𝐶 ) |
13 |
12
|
fmpttd |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( 𝑥 ∈ 𝒫 𝑋 ↦ ∩ { 𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠 } ) : 𝒫 𝑋 ⟶ 𝐶 ) |