Metamath Proof Explorer


Theorem mrcflem

Description: The domain and range of the function expression for Moore closures. (Contributed by Stefan O'Rear, 31-Jan-2015)

Ref Expression
Assertion mrcflem ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( 𝑥 ∈ 𝒫 𝑋 { 𝑠𝐶𝑥𝑠 } ) : 𝒫 𝑋𝐶 )

Proof

Step Hyp Ref Expression
1 simpl ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ∈ 𝒫 𝑋 ) → 𝐶 ∈ ( Moore ‘ 𝑋 ) )
2 ssrab2 { 𝑠𝐶𝑥𝑠 } ⊆ 𝐶
3 2 a1i ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ∈ 𝒫 𝑋 ) → { 𝑠𝐶𝑥𝑠 } ⊆ 𝐶 )
4 sseq2 ( 𝑠 = 𝑋 → ( 𝑥𝑠𝑥𝑋 ) )
5 mre1cl ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝑋𝐶 )
6 5 adantr ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ∈ 𝒫 𝑋 ) → 𝑋𝐶 )
7 elpwi ( 𝑥 ∈ 𝒫 𝑋𝑥𝑋 )
8 7 adantl ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ∈ 𝒫 𝑋 ) → 𝑥𝑋 )
9 4 6 8 elrabd ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ∈ 𝒫 𝑋 ) → 𝑋 ∈ { 𝑠𝐶𝑥𝑠 } )
10 9 ne0d ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ∈ 𝒫 𝑋 ) → { 𝑠𝐶𝑥𝑠 } ≠ ∅ )
11 mreintcl ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ { 𝑠𝐶𝑥𝑠 } ⊆ 𝐶 ∧ { 𝑠𝐶𝑥𝑠 } ≠ ∅ ) → { 𝑠𝐶𝑥𝑠 } ∈ 𝐶 )
12 1 3 10 11 syl3anc ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ∈ 𝒫 𝑋 ) → { 𝑠𝐶𝑥𝑠 } ∈ 𝐶 )
13 12 fmpttd ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( 𝑥 ∈ 𝒫 𝑋 { 𝑠𝐶𝑥𝑠 } ) : 𝒫 𝑋𝐶 )