Step |
Hyp |
Ref |
Expression |
1 |
|
mrcfval.f |
⊢ 𝐹 = ( mrCls ‘ 𝐶 ) |
2 |
|
fvssunirn |
⊢ ( Moore ‘ 𝑋 ) ⊆ ∪ ran Moore |
3 |
2
|
sseli |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝐶 ∈ ∪ ran Moore ) |
4 |
|
unieq |
⊢ ( 𝑐 = 𝐶 → ∪ 𝑐 = ∪ 𝐶 ) |
5 |
4
|
pweqd |
⊢ ( 𝑐 = 𝐶 → 𝒫 ∪ 𝑐 = 𝒫 ∪ 𝐶 ) |
6 |
|
rabeq |
⊢ ( 𝑐 = 𝐶 → { 𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠 } = { 𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠 } ) |
7 |
6
|
inteqd |
⊢ ( 𝑐 = 𝐶 → ∩ { 𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠 } = ∩ { 𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠 } ) |
8 |
5 7
|
mpteq12dv |
⊢ ( 𝑐 = 𝐶 → ( 𝑥 ∈ 𝒫 ∪ 𝑐 ↦ ∩ { 𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠 } ) = ( 𝑥 ∈ 𝒫 ∪ 𝐶 ↦ ∩ { 𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠 } ) ) |
9 |
|
df-mrc |
⊢ mrCls = ( 𝑐 ∈ ∪ ran Moore ↦ ( 𝑥 ∈ 𝒫 ∪ 𝑐 ↦ ∩ { 𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠 } ) ) |
10 |
|
mreunirn |
⊢ ( 𝑐 ∈ ∪ ran Moore ↔ 𝑐 ∈ ( Moore ‘ ∪ 𝑐 ) ) |
11 |
|
mrcflem |
⊢ ( 𝑐 ∈ ( Moore ‘ ∪ 𝑐 ) → ( 𝑥 ∈ 𝒫 ∪ 𝑐 ↦ ∩ { 𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠 } ) : 𝒫 ∪ 𝑐 ⟶ 𝑐 ) |
12 |
10 11
|
sylbi |
⊢ ( 𝑐 ∈ ∪ ran Moore → ( 𝑥 ∈ 𝒫 ∪ 𝑐 ↦ ∩ { 𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠 } ) : 𝒫 ∪ 𝑐 ⟶ 𝑐 ) |
13 |
|
fssxp |
⊢ ( ( 𝑥 ∈ 𝒫 ∪ 𝑐 ↦ ∩ { 𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠 } ) : 𝒫 ∪ 𝑐 ⟶ 𝑐 → ( 𝑥 ∈ 𝒫 ∪ 𝑐 ↦ ∩ { 𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠 } ) ⊆ ( 𝒫 ∪ 𝑐 × 𝑐 ) ) |
14 |
12 13
|
syl |
⊢ ( 𝑐 ∈ ∪ ran Moore → ( 𝑥 ∈ 𝒫 ∪ 𝑐 ↦ ∩ { 𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠 } ) ⊆ ( 𝒫 ∪ 𝑐 × 𝑐 ) ) |
15 |
|
vuniex |
⊢ ∪ 𝑐 ∈ V |
16 |
15
|
pwex |
⊢ 𝒫 ∪ 𝑐 ∈ V |
17 |
|
vex |
⊢ 𝑐 ∈ V |
18 |
16 17
|
xpex |
⊢ ( 𝒫 ∪ 𝑐 × 𝑐 ) ∈ V |
19 |
|
ssexg |
⊢ ( ( ( 𝑥 ∈ 𝒫 ∪ 𝑐 ↦ ∩ { 𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠 } ) ⊆ ( 𝒫 ∪ 𝑐 × 𝑐 ) ∧ ( 𝒫 ∪ 𝑐 × 𝑐 ) ∈ V ) → ( 𝑥 ∈ 𝒫 ∪ 𝑐 ↦ ∩ { 𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠 } ) ∈ V ) |
20 |
14 18 19
|
sylancl |
⊢ ( 𝑐 ∈ ∪ ran Moore → ( 𝑥 ∈ 𝒫 ∪ 𝑐 ↦ ∩ { 𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠 } ) ∈ V ) |
21 |
8 9 20
|
fvmpt3 |
⊢ ( 𝐶 ∈ ∪ ran Moore → ( mrCls ‘ 𝐶 ) = ( 𝑥 ∈ 𝒫 ∪ 𝐶 ↦ ∩ { 𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠 } ) ) |
22 |
3 21
|
syl |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( mrCls ‘ 𝐶 ) = ( 𝑥 ∈ 𝒫 ∪ 𝐶 ↦ ∩ { 𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠 } ) ) |
23 |
|
mreuni |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ∪ 𝐶 = 𝑋 ) |
24 |
23
|
pweqd |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝒫 ∪ 𝐶 = 𝒫 𝑋 ) |
25 |
24
|
mpteq1d |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( 𝑥 ∈ 𝒫 ∪ 𝐶 ↦ ∩ { 𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠 } ) = ( 𝑥 ∈ 𝒫 𝑋 ↦ ∩ { 𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠 } ) ) |
26 |
22 25
|
eqtrd |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( mrCls ‘ 𝐶 ) = ( 𝑥 ∈ 𝒫 𝑋 ↦ ∩ { 𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠 } ) ) |
27 |
1 26
|
eqtrid |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝐹 = ( 𝑥 ∈ 𝒫 𝑋 ↦ ∩ { 𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠 } ) ) |