| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mrcfval.f |
⊢ 𝐹 = ( mrCls ‘ 𝐶 ) |
| 2 |
|
fvssunirn |
⊢ ( Moore ‘ 𝑋 ) ⊆ ∪ ran Moore |
| 3 |
2
|
sseli |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝐶 ∈ ∪ ran Moore ) |
| 4 |
|
unieq |
⊢ ( 𝑐 = 𝐶 → ∪ 𝑐 = ∪ 𝐶 ) |
| 5 |
4
|
pweqd |
⊢ ( 𝑐 = 𝐶 → 𝒫 ∪ 𝑐 = 𝒫 ∪ 𝐶 ) |
| 6 |
|
rabeq |
⊢ ( 𝑐 = 𝐶 → { 𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠 } = { 𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠 } ) |
| 7 |
6
|
inteqd |
⊢ ( 𝑐 = 𝐶 → ∩ { 𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠 } = ∩ { 𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠 } ) |
| 8 |
5 7
|
mpteq12dv |
⊢ ( 𝑐 = 𝐶 → ( 𝑥 ∈ 𝒫 ∪ 𝑐 ↦ ∩ { 𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠 } ) = ( 𝑥 ∈ 𝒫 ∪ 𝐶 ↦ ∩ { 𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠 } ) ) |
| 9 |
|
df-mrc |
⊢ mrCls = ( 𝑐 ∈ ∪ ran Moore ↦ ( 𝑥 ∈ 𝒫 ∪ 𝑐 ↦ ∩ { 𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠 } ) ) |
| 10 |
|
mreunirn |
⊢ ( 𝑐 ∈ ∪ ran Moore ↔ 𝑐 ∈ ( Moore ‘ ∪ 𝑐 ) ) |
| 11 |
|
mrcflem |
⊢ ( 𝑐 ∈ ( Moore ‘ ∪ 𝑐 ) → ( 𝑥 ∈ 𝒫 ∪ 𝑐 ↦ ∩ { 𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠 } ) : 𝒫 ∪ 𝑐 ⟶ 𝑐 ) |
| 12 |
10 11
|
sylbi |
⊢ ( 𝑐 ∈ ∪ ran Moore → ( 𝑥 ∈ 𝒫 ∪ 𝑐 ↦ ∩ { 𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠 } ) : 𝒫 ∪ 𝑐 ⟶ 𝑐 ) |
| 13 |
|
fssxp |
⊢ ( ( 𝑥 ∈ 𝒫 ∪ 𝑐 ↦ ∩ { 𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠 } ) : 𝒫 ∪ 𝑐 ⟶ 𝑐 → ( 𝑥 ∈ 𝒫 ∪ 𝑐 ↦ ∩ { 𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠 } ) ⊆ ( 𝒫 ∪ 𝑐 × 𝑐 ) ) |
| 14 |
12 13
|
syl |
⊢ ( 𝑐 ∈ ∪ ran Moore → ( 𝑥 ∈ 𝒫 ∪ 𝑐 ↦ ∩ { 𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠 } ) ⊆ ( 𝒫 ∪ 𝑐 × 𝑐 ) ) |
| 15 |
|
vuniex |
⊢ ∪ 𝑐 ∈ V |
| 16 |
15
|
pwex |
⊢ 𝒫 ∪ 𝑐 ∈ V |
| 17 |
|
vex |
⊢ 𝑐 ∈ V |
| 18 |
16 17
|
xpex |
⊢ ( 𝒫 ∪ 𝑐 × 𝑐 ) ∈ V |
| 19 |
|
ssexg |
⊢ ( ( ( 𝑥 ∈ 𝒫 ∪ 𝑐 ↦ ∩ { 𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠 } ) ⊆ ( 𝒫 ∪ 𝑐 × 𝑐 ) ∧ ( 𝒫 ∪ 𝑐 × 𝑐 ) ∈ V ) → ( 𝑥 ∈ 𝒫 ∪ 𝑐 ↦ ∩ { 𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠 } ) ∈ V ) |
| 20 |
14 18 19
|
sylancl |
⊢ ( 𝑐 ∈ ∪ ran Moore → ( 𝑥 ∈ 𝒫 ∪ 𝑐 ↦ ∩ { 𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠 } ) ∈ V ) |
| 21 |
8 9 20
|
fvmpt3 |
⊢ ( 𝐶 ∈ ∪ ran Moore → ( mrCls ‘ 𝐶 ) = ( 𝑥 ∈ 𝒫 ∪ 𝐶 ↦ ∩ { 𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠 } ) ) |
| 22 |
3 21
|
syl |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( mrCls ‘ 𝐶 ) = ( 𝑥 ∈ 𝒫 ∪ 𝐶 ↦ ∩ { 𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠 } ) ) |
| 23 |
|
mreuni |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ∪ 𝐶 = 𝑋 ) |
| 24 |
23
|
pweqd |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝒫 ∪ 𝐶 = 𝒫 𝑋 ) |
| 25 |
24
|
mpteq1d |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( 𝑥 ∈ 𝒫 ∪ 𝐶 ↦ ∩ { 𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠 } ) = ( 𝑥 ∈ 𝒫 𝑋 ↦ ∩ { 𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠 } ) ) |
| 26 |
22 25
|
eqtrd |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( mrCls ‘ 𝐶 ) = ( 𝑥 ∈ 𝒫 𝑋 ↦ ∩ { 𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠 } ) ) |
| 27 |
1 26
|
eqtrid |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝐹 = ( 𝑥 ∈ 𝒫 𝑋 ↦ ∩ { 𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠 } ) ) |