Metamath Proof Explorer


Theorem mrcfval

Description: Value of the function expression for the Moore closure. (Contributed by Stefan O'Rear, 31-Jan-2015)

Ref Expression
Hypothesis mrcfval.f 𝐹 = ( mrCls ‘ 𝐶 )
Assertion mrcfval ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝐹 = ( 𝑥 ∈ 𝒫 𝑋 { 𝑠𝐶𝑥𝑠 } ) )

Proof

Step Hyp Ref Expression
1 mrcfval.f 𝐹 = ( mrCls ‘ 𝐶 )
2 fvssunirn ( Moore ‘ 𝑋 ) ⊆ ran Moore
3 2 sseli ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝐶 ran Moore )
4 unieq ( 𝑐 = 𝐶 𝑐 = 𝐶 )
5 4 pweqd ( 𝑐 = 𝐶 → 𝒫 𝑐 = 𝒫 𝐶 )
6 rabeq ( 𝑐 = 𝐶 → { 𝑠𝑐𝑥𝑠 } = { 𝑠𝐶𝑥𝑠 } )
7 6 inteqd ( 𝑐 = 𝐶 { 𝑠𝑐𝑥𝑠 } = { 𝑠𝐶𝑥𝑠 } )
8 5 7 mpteq12dv ( 𝑐 = 𝐶 → ( 𝑥 ∈ 𝒫 𝑐 { 𝑠𝑐𝑥𝑠 } ) = ( 𝑥 ∈ 𝒫 𝐶 { 𝑠𝐶𝑥𝑠 } ) )
9 df-mrc mrCls = ( 𝑐 ran Moore ↦ ( 𝑥 ∈ 𝒫 𝑐 { 𝑠𝑐𝑥𝑠 } ) )
10 mreunirn ( 𝑐 ran Moore ↔ 𝑐 ∈ ( Moore ‘ 𝑐 ) )
11 mrcflem ( 𝑐 ∈ ( Moore ‘ 𝑐 ) → ( 𝑥 ∈ 𝒫 𝑐 { 𝑠𝑐𝑥𝑠 } ) : 𝒫 𝑐𝑐 )
12 10 11 sylbi ( 𝑐 ran Moore → ( 𝑥 ∈ 𝒫 𝑐 { 𝑠𝑐𝑥𝑠 } ) : 𝒫 𝑐𝑐 )
13 fssxp ( ( 𝑥 ∈ 𝒫 𝑐 { 𝑠𝑐𝑥𝑠 } ) : 𝒫 𝑐𝑐 → ( 𝑥 ∈ 𝒫 𝑐 { 𝑠𝑐𝑥𝑠 } ) ⊆ ( 𝒫 𝑐 × 𝑐 ) )
14 12 13 syl ( 𝑐 ran Moore → ( 𝑥 ∈ 𝒫 𝑐 { 𝑠𝑐𝑥𝑠 } ) ⊆ ( 𝒫 𝑐 × 𝑐 ) )
15 vuniex 𝑐 ∈ V
16 15 pwex 𝒫 𝑐 ∈ V
17 vex 𝑐 ∈ V
18 16 17 xpex ( 𝒫 𝑐 × 𝑐 ) ∈ V
19 ssexg ( ( ( 𝑥 ∈ 𝒫 𝑐 { 𝑠𝑐𝑥𝑠 } ) ⊆ ( 𝒫 𝑐 × 𝑐 ) ∧ ( 𝒫 𝑐 × 𝑐 ) ∈ V ) → ( 𝑥 ∈ 𝒫 𝑐 { 𝑠𝑐𝑥𝑠 } ) ∈ V )
20 14 18 19 sylancl ( 𝑐 ran Moore → ( 𝑥 ∈ 𝒫 𝑐 { 𝑠𝑐𝑥𝑠 } ) ∈ V )
21 8 9 20 fvmpt3 ( 𝐶 ran Moore → ( mrCls ‘ 𝐶 ) = ( 𝑥 ∈ 𝒫 𝐶 { 𝑠𝐶𝑥𝑠 } ) )
22 3 21 syl ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( mrCls ‘ 𝐶 ) = ( 𝑥 ∈ 𝒫 𝐶 { 𝑠𝐶𝑥𝑠 } ) )
23 mreuni ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝐶 = 𝑋 )
24 23 pweqd ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝒫 𝐶 = 𝒫 𝑋 )
25 24 mpteq1d ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( 𝑥 ∈ 𝒫 𝐶 { 𝑠𝐶𝑥𝑠 } ) = ( 𝑥 ∈ 𝒫 𝑋 { 𝑠𝐶𝑥𝑠 } ) )
26 22 25 eqtrd ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( mrCls ‘ 𝐶 ) = ( 𝑥 ∈ 𝒫 𝑋 { 𝑠𝐶𝑥𝑠 } ) )
27 1 26 eqtrid ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝐹 = ( 𝑥 ∈ 𝒫 𝑋 { 𝑠𝐶𝑥𝑠 } ) )