Description: The closure of a closed set is itself. (Contributed by Stefan O'Rear, 31-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mrcfval.f | ⊢ 𝐹 = ( mrCls ‘ 𝐶 ) | |
| Assertion | mrcid | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑈 ) = 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mrcfval.f | ⊢ 𝐹 = ( mrCls ‘ 𝐶 ) | |
| 2 | mress | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐶 ) → 𝑈 ⊆ 𝑋 ) | |
| 3 | 1 | mrcval | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝑋 ) → ( 𝐹 ‘ 𝑈 ) = ∩ { 𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠 } ) |
| 4 | 2 3 | syldan | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑈 ) = ∩ { 𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠 } ) |
| 5 | intmin | ⊢ ( 𝑈 ∈ 𝐶 → ∩ { 𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠 } = 𝑈 ) | |
| 6 | 5 | adantl | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐶 ) → ∩ { 𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠 } = 𝑈 ) |
| 7 | 4 6 | eqtrd | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑈 ) = 𝑈 ) |