Metamath Proof Explorer


Theorem mrcidb

Description: A set is closed iff it is equal to its closure. (Contributed by Stefan O'Rear, 31-Jan-2015)

Ref Expression
Hypothesis mrcfval.f 𝐹 = ( mrCls ‘ 𝐶 )
Assertion mrcidb ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( 𝑈𝐶 ↔ ( 𝐹𝑈 ) = 𝑈 ) )

Proof

Step Hyp Ref Expression
1 mrcfval.f 𝐹 = ( mrCls ‘ 𝐶 )
2 1 mrcid ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈𝐶 ) → ( 𝐹𝑈 ) = 𝑈 )
3 simpr ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ( 𝐹𝑈 ) = 𝑈 ) → ( 𝐹𝑈 ) = 𝑈 )
4 1 mrcssv ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( 𝐹𝑈 ) ⊆ 𝑋 )
5 4 adantr ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ( 𝐹𝑈 ) = 𝑈 ) → ( 𝐹𝑈 ) ⊆ 𝑋 )
6 3 5 eqsstrrd ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ( 𝐹𝑈 ) = 𝑈 ) → 𝑈𝑋 )
7 1 mrccl ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈𝑋 ) → ( 𝐹𝑈 ) ∈ 𝐶 )
8 6 7 syldan ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ( 𝐹𝑈 ) = 𝑈 ) → ( 𝐹𝑈 ) ∈ 𝐶 )
9 3 8 eqeltrrd ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ( 𝐹𝑈 ) = 𝑈 ) → 𝑈𝐶 )
10 2 9 impbida ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( 𝑈𝐶 ↔ ( 𝐹𝑈 ) = 𝑈 ) )