| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mrcfval.f | ⊢ 𝐹  =  ( mrCls ‘ 𝐶 ) | 
						
							| 2 | 1 | mrcid | ⊢ ( ( 𝐶  ∈  ( Moore ‘ 𝑋 )  ∧  𝑈  ∈  𝐶 )  →  ( 𝐹 ‘ 𝑈 )  =  𝑈 ) | 
						
							| 3 |  | simpr | ⊢ ( ( 𝐶  ∈  ( Moore ‘ 𝑋 )  ∧  ( 𝐹 ‘ 𝑈 )  =  𝑈 )  →  ( 𝐹 ‘ 𝑈 )  =  𝑈 ) | 
						
							| 4 | 1 | mrcssv | ⊢ ( 𝐶  ∈  ( Moore ‘ 𝑋 )  →  ( 𝐹 ‘ 𝑈 )  ⊆  𝑋 ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( 𝐶  ∈  ( Moore ‘ 𝑋 )  ∧  ( 𝐹 ‘ 𝑈 )  =  𝑈 )  →  ( 𝐹 ‘ 𝑈 )  ⊆  𝑋 ) | 
						
							| 6 | 3 5 | eqsstrrd | ⊢ ( ( 𝐶  ∈  ( Moore ‘ 𝑋 )  ∧  ( 𝐹 ‘ 𝑈 )  =  𝑈 )  →  𝑈  ⊆  𝑋 ) | 
						
							| 7 | 1 | mrccl | ⊢ ( ( 𝐶  ∈  ( Moore ‘ 𝑋 )  ∧  𝑈  ⊆  𝑋 )  →  ( 𝐹 ‘ 𝑈 )  ∈  𝐶 ) | 
						
							| 8 | 6 7 | syldan | ⊢ ( ( 𝐶  ∈  ( Moore ‘ 𝑋 )  ∧  ( 𝐹 ‘ 𝑈 )  =  𝑈 )  →  ( 𝐹 ‘ 𝑈 )  ∈  𝐶 ) | 
						
							| 9 | 3 8 | eqeltrrd | ⊢ ( ( 𝐶  ∈  ( Moore ‘ 𝑋 )  ∧  ( 𝐹 ‘ 𝑈 )  =  𝑈 )  →  𝑈  ∈  𝐶 ) | 
						
							| 10 | 2 9 | impbida | ⊢ ( 𝐶  ∈  ( Moore ‘ 𝑋 )  →  ( 𝑈  ∈  𝐶  ↔  ( 𝐹 ‘ 𝑈 )  =  𝑈 ) ) |