Step |
Hyp |
Ref |
Expression |
1 |
|
mrcfval.f |
⊢ 𝐹 = ( mrCls ‘ 𝐶 ) |
2 |
1
|
mrcidb |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( 𝑈 ∈ 𝐶 ↔ ( 𝐹 ‘ 𝑈 ) = 𝑈 ) ) |
3 |
2
|
adantr |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝑋 ) → ( 𝑈 ∈ 𝐶 ↔ ( 𝐹 ‘ 𝑈 ) = 𝑈 ) ) |
4 |
|
eqss |
⊢ ( ( 𝐹 ‘ 𝑈 ) = 𝑈 ↔ ( ( 𝐹 ‘ 𝑈 ) ⊆ 𝑈 ∧ 𝑈 ⊆ ( 𝐹 ‘ 𝑈 ) ) ) |
5 |
1
|
mrcssid |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝑋 ) → 𝑈 ⊆ ( 𝐹 ‘ 𝑈 ) ) |
6 |
5
|
biantrud |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝑋 ) → ( ( 𝐹 ‘ 𝑈 ) ⊆ 𝑈 ↔ ( ( 𝐹 ‘ 𝑈 ) ⊆ 𝑈 ∧ 𝑈 ⊆ ( 𝐹 ‘ 𝑈 ) ) ) ) |
7 |
4 6
|
bitr4id |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝑋 ) → ( ( 𝐹 ‘ 𝑈 ) = 𝑈 ↔ ( 𝐹 ‘ 𝑈 ) ⊆ 𝑈 ) ) |
8 |
3 7
|
bitrd |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝑋 ) → ( 𝑈 ∈ 𝐶 ↔ ( 𝐹 ‘ 𝑈 ) ⊆ 𝑈 ) ) |