| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mrcfval.f | ⊢ 𝐹  =  ( mrCls ‘ 𝐶 ) | 
						
							| 2 | 1 | mrcidb | ⊢ ( 𝐶  ∈  ( Moore ‘ 𝑋 )  →  ( 𝑈  ∈  𝐶  ↔  ( 𝐹 ‘ 𝑈 )  =  𝑈 ) ) | 
						
							| 3 | 2 | adantr | ⊢ ( ( 𝐶  ∈  ( Moore ‘ 𝑋 )  ∧  𝑈  ⊆  𝑋 )  →  ( 𝑈  ∈  𝐶  ↔  ( 𝐹 ‘ 𝑈 )  =  𝑈 ) ) | 
						
							| 4 |  | eqss | ⊢ ( ( 𝐹 ‘ 𝑈 )  =  𝑈  ↔  ( ( 𝐹 ‘ 𝑈 )  ⊆  𝑈  ∧  𝑈  ⊆  ( 𝐹 ‘ 𝑈 ) ) ) | 
						
							| 5 | 1 | mrcssid | ⊢ ( ( 𝐶  ∈  ( Moore ‘ 𝑋 )  ∧  𝑈  ⊆  𝑋 )  →  𝑈  ⊆  ( 𝐹 ‘ 𝑈 ) ) | 
						
							| 6 | 5 | biantrud | ⊢ ( ( 𝐶  ∈  ( Moore ‘ 𝑋 )  ∧  𝑈  ⊆  𝑋 )  →  ( ( 𝐹 ‘ 𝑈 )  ⊆  𝑈  ↔  ( ( 𝐹 ‘ 𝑈 )  ⊆  𝑈  ∧  𝑈  ⊆  ( 𝐹 ‘ 𝑈 ) ) ) ) | 
						
							| 7 | 4 6 | bitr4id | ⊢ ( ( 𝐶  ∈  ( Moore ‘ 𝑋 )  ∧  𝑈  ⊆  𝑋 )  →  ( ( 𝐹 ‘ 𝑈 )  =  𝑈  ↔  ( 𝐹 ‘ 𝑈 )  ⊆  𝑈 ) ) | 
						
							| 8 | 3 7 | bitrd | ⊢ ( ( 𝐶  ∈  ( Moore ‘ 𝑋 )  ∧  𝑈  ⊆  𝑋 )  →  ( 𝑈  ∈  𝐶  ↔  ( 𝐹 ‘ 𝑈 )  ⊆  𝑈 ) ) |