| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mrclsp.u | ⊢ 𝑈  =  ( LSubSp ‘ 𝑊 ) | 
						
							| 2 |  | mrclsp.k | ⊢ 𝐾  =  ( LSpan ‘ 𝑊 ) | 
						
							| 3 |  | mrclsp.f | ⊢ 𝐹  =  ( mrCls ‘ 𝑈 ) | 
						
							| 4 |  | eqid | ⊢ ( Base ‘ 𝑊 )  =  ( Base ‘ 𝑊 ) | 
						
							| 5 | 4 1 2 | lspfval | ⊢ ( 𝑊  ∈  LMod  →  𝐾  =  ( 𝑎  ∈  𝒫  ( Base ‘ 𝑊 )  ↦  ∩  { 𝑏  ∈  𝑈  ∣  𝑎  ⊆  𝑏 } ) ) | 
						
							| 6 | 4 1 | lssmre | ⊢ ( 𝑊  ∈  LMod  →  𝑈  ∈  ( Moore ‘ ( Base ‘ 𝑊 ) ) ) | 
						
							| 7 | 3 | mrcfval | ⊢ ( 𝑈  ∈  ( Moore ‘ ( Base ‘ 𝑊 ) )  →  𝐹  =  ( 𝑎  ∈  𝒫  ( Base ‘ 𝑊 )  ↦  ∩  { 𝑏  ∈  𝑈  ∣  𝑎  ⊆  𝑏 } ) ) | 
						
							| 8 | 6 7 | syl | ⊢ ( 𝑊  ∈  LMod  →  𝐹  =  ( 𝑎  ∈  𝒫  ( Base ‘ 𝑊 )  ↦  ∩  { 𝑏  ∈  𝑈  ∣  𝑎  ⊆  𝑏 } ) ) | 
						
							| 9 | 5 8 | eqtr4d | ⊢ ( 𝑊  ∈  LMod  →  𝐾  =  𝐹 ) |