Description: Moore closure generalizes ideal span. (Contributed by Stefan O'Rear, 4-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mrcrsp.u | ⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) | |
| mrcrsp.k | ⊢ 𝐾 = ( RSpan ‘ 𝑅 ) | ||
| mrcrsp.f | ⊢ 𝐹 = ( mrCls ‘ 𝑈 ) | ||
| Assertion | mrcrsp | ⊢ ( 𝑅 ∈ Ring → 𝐾 = 𝐹 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mrcrsp.u | ⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) | |
| 2 | mrcrsp.k | ⊢ 𝐾 = ( RSpan ‘ 𝑅 ) | |
| 3 | mrcrsp.f | ⊢ 𝐹 = ( mrCls ‘ 𝑈 ) | |
| 4 | rlmlmod | ⊢ ( 𝑅 ∈ Ring → ( ringLMod ‘ 𝑅 ) ∈ LMod ) | |
| 5 | lidlval | ⊢ ( LIdeal ‘ 𝑅 ) = ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) | |
| 6 | 1 5 | eqtri | ⊢ 𝑈 = ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) | 
| 7 | rspval | ⊢ ( RSpan ‘ 𝑅 ) = ( LSpan ‘ ( ringLMod ‘ 𝑅 ) ) | |
| 8 | 2 7 | eqtri | ⊢ 𝐾 = ( LSpan ‘ ( ringLMod ‘ 𝑅 ) ) | 
| 9 | 6 8 3 | mrclsp | ⊢ ( ( ringLMod ‘ 𝑅 ) ∈ LMod → 𝐾 = 𝐹 ) | 
| 10 | 4 9 | syl | ⊢ ( 𝑅 ∈ Ring → 𝐾 = 𝐹 ) |