Description: Moore closure generalizes ideal span. (Contributed by Stefan O'Rear, 4-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mrcrsp.u | ⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) | |
mrcrsp.k | ⊢ 𝐾 = ( RSpan ‘ 𝑅 ) | ||
mrcrsp.f | ⊢ 𝐹 = ( mrCls ‘ 𝑈 ) | ||
Assertion | mrcrsp | ⊢ ( 𝑅 ∈ Ring → 𝐾 = 𝐹 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mrcrsp.u | ⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) | |
2 | mrcrsp.k | ⊢ 𝐾 = ( RSpan ‘ 𝑅 ) | |
3 | mrcrsp.f | ⊢ 𝐹 = ( mrCls ‘ 𝑈 ) | |
4 | rlmlmod | ⊢ ( 𝑅 ∈ Ring → ( ringLMod ‘ 𝑅 ) ∈ LMod ) | |
5 | lidlval | ⊢ ( LIdeal ‘ 𝑅 ) = ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) | |
6 | 1 5 | eqtri | ⊢ 𝑈 = ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) |
7 | rspval | ⊢ ( RSpan ‘ 𝑅 ) = ( LSpan ‘ ( ringLMod ‘ 𝑅 ) ) | |
8 | 2 7 | eqtri | ⊢ 𝐾 = ( LSpan ‘ ( ringLMod ‘ 𝑅 ) ) |
9 | 6 8 3 | mrclsp | ⊢ ( ( ringLMod ‘ 𝑅 ) ∈ LMod → 𝐾 = 𝐹 ) |
10 | 4 9 | syl | ⊢ ( 𝑅 ∈ Ring → 𝐾 = 𝐹 ) |