Metamath Proof Explorer


Theorem mrcrsp

Description: Moore closure generalizes ideal span. (Contributed by Stefan O'Rear, 4-Apr-2015)

Ref Expression
Hypotheses mrcrsp.u 𝑈 = ( LIdeal ‘ 𝑅 )
mrcrsp.k 𝐾 = ( RSpan ‘ 𝑅 )
mrcrsp.f 𝐹 = ( mrCls ‘ 𝑈 )
Assertion mrcrsp ( 𝑅 ∈ Ring → 𝐾 = 𝐹 )

Proof

Step Hyp Ref Expression
1 mrcrsp.u 𝑈 = ( LIdeal ‘ 𝑅 )
2 mrcrsp.k 𝐾 = ( RSpan ‘ 𝑅 )
3 mrcrsp.f 𝐹 = ( mrCls ‘ 𝑈 )
4 rlmlmod ( 𝑅 ∈ Ring → ( ringLMod ‘ 𝑅 ) ∈ LMod )
5 lidlval ( LIdeal ‘ 𝑅 ) = ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) )
6 1 5 eqtri 𝑈 = ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) )
7 rspval ( RSpan ‘ 𝑅 ) = ( LSpan ‘ ( ringLMod ‘ 𝑅 ) )
8 2 7 eqtri 𝐾 = ( LSpan ‘ ( ringLMod ‘ 𝑅 ) )
9 6 8 3 mrclsp ( ( ringLMod ‘ 𝑅 ) ∈ LMod → 𝐾 = 𝐹 )
10 4 9 syl ( 𝑅 ∈ Ring → 𝐾 = 𝐹 )