Step |
Hyp |
Ref |
Expression |
1 |
|
mrcfval.f |
⊢ 𝐹 = ( mrCls ‘ 𝐶 ) |
2 |
|
mress |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑉 ∈ 𝐶 ) → 𝑉 ⊆ 𝑋 ) |
3 |
2
|
3adant2 |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝑉 ∧ 𝑉 ∈ 𝐶 ) → 𝑉 ⊆ 𝑋 ) |
4 |
1
|
mrcss |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝑉 ∧ 𝑉 ⊆ 𝑋 ) → ( 𝐹 ‘ 𝑈 ) ⊆ ( 𝐹 ‘ 𝑉 ) ) |
5 |
3 4
|
syld3an3 |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝑉 ∧ 𝑉 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑈 ) ⊆ ( 𝐹 ‘ 𝑉 ) ) |
6 |
1
|
mrcid |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑉 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑉 ) = 𝑉 ) |
7 |
6
|
3adant2 |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝑉 ∧ 𝑉 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑉 ) = 𝑉 ) |
8 |
5 7
|
sseqtrd |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝑉 ∧ 𝑉 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑈 ) ⊆ 𝑉 ) |