Metamath Proof Explorer


Theorem mrcsscl

Description: The closure is the minimal closed set; any closed set which contains the generators is a superset of the closure. (Contributed by Stefan O'Rear, 31-Jan-2015)

Ref Expression
Hypothesis mrcfval.f 𝐹 = ( mrCls ‘ 𝐶 )
Assertion mrcsscl ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈𝑉𝑉𝐶 ) → ( 𝐹𝑈 ) ⊆ 𝑉 )

Proof

Step Hyp Ref Expression
1 mrcfval.f 𝐹 = ( mrCls ‘ 𝐶 )
2 mress ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑉𝐶 ) → 𝑉𝑋 )
3 2 3adant2 ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈𝑉𝑉𝐶 ) → 𝑉𝑋 )
4 1 mrcss ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈𝑉𝑉𝑋 ) → ( 𝐹𝑈 ) ⊆ ( 𝐹𝑉 ) )
5 3 4 syld3an3 ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈𝑉𝑉𝐶 ) → ( 𝐹𝑈 ) ⊆ ( 𝐹𝑉 ) )
6 1 mrcid ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑉𝐶 ) → ( 𝐹𝑉 ) = 𝑉 )
7 6 3adant2 ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈𝑉𝑉𝐶 ) → ( 𝐹𝑉 ) = 𝑉 )
8 5 7 sseqtrd ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈𝑉𝑉𝐶 ) → ( 𝐹𝑈 ) ⊆ 𝑉 )