Description: The closure of a set is a superset. (Contributed by Stefan O'Rear, 31-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | mrcfval.f | ⊢ 𝐹 = ( mrCls ‘ 𝐶 ) | |
Assertion | mrcssid | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝑋 ) → 𝑈 ⊆ ( 𝐹 ‘ 𝑈 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mrcfval.f | ⊢ 𝐹 = ( mrCls ‘ 𝐶 ) | |
2 | ssintub | ⊢ 𝑈 ⊆ ∩ { 𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠 } | |
3 | 1 | mrcval | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝑋 ) → ( 𝐹 ‘ 𝑈 ) = ∩ { 𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠 } ) |
4 | 2 3 | sseqtrrid | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝑋 ) → 𝑈 ⊆ ( 𝐹 ‘ 𝑈 ) ) |