Metamath Proof Explorer


Theorem mrcssid

Description: The closure of a set is a superset. (Contributed by Stefan O'Rear, 31-Jan-2015)

Ref Expression
Hypothesis mrcfval.f 𝐹 = ( mrCls ‘ 𝐶 )
Assertion mrcssid ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈𝑋 ) → 𝑈 ⊆ ( 𝐹𝑈 ) )

Proof

Step Hyp Ref Expression
1 mrcfval.f 𝐹 = ( mrCls ‘ 𝐶 )
2 ssintub 𝑈 { 𝑠𝐶𝑈𝑠 }
3 1 mrcval ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈𝑋 ) → ( 𝐹𝑈 ) = { 𝑠𝐶𝑈𝑠 } )
4 2 3 sseqtrrid ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈𝑋 ) → 𝑈 ⊆ ( 𝐹𝑈 ) )