Metamath Proof Explorer
Description: A set is contained in its Moore closure. Deduction form of mrcssid .
(Contributed by David Moews, 1-May-2017)
|
|
Ref |
Expression |
|
Hypotheses |
mrcssidd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ( Moore ‘ 𝑋 ) ) |
|
|
mrcssidd.2 |
⊢ 𝑁 = ( mrCls ‘ 𝐴 ) |
|
|
mrcssidd.3 |
⊢ ( 𝜑 → 𝑈 ⊆ 𝑋 ) |
|
Assertion |
mrcssidd |
⊢ ( 𝜑 → 𝑈 ⊆ ( 𝑁 ‘ 𝑈 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
mrcssidd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ( Moore ‘ 𝑋 ) ) |
2 |
|
mrcssidd.2 |
⊢ 𝑁 = ( mrCls ‘ 𝐴 ) |
3 |
|
mrcssidd.3 |
⊢ ( 𝜑 → 𝑈 ⊆ 𝑋 ) |
4 |
2
|
mrcssid |
⊢ ( ( 𝐴 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝑋 ) → 𝑈 ⊆ ( 𝑁 ‘ 𝑈 ) ) |
5 |
1 3 4
|
syl2anc |
⊢ ( 𝜑 → 𝑈 ⊆ ( 𝑁 ‘ 𝑈 ) ) |