Step |
Hyp |
Ref |
Expression |
1 |
|
mrcfval.f |
⊢ 𝐹 = ( mrCls ‘ 𝐶 ) |
2 |
|
simp1 |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝑋 ∧ 𝑉 ⊆ 𝑋 ) → 𝐶 ∈ ( Moore ‘ 𝑋 ) ) |
3 |
|
mre1cl |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝑋 ∈ 𝐶 ) |
4 |
|
elpw2g |
⊢ ( 𝑋 ∈ 𝐶 → ( 𝑈 ∈ 𝒫 𝑋 ↔ 𝑈 ⊆ 𝑋 ) ) |
5 |
3 4
|
syl |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( 𝑈 ∈ 𝒫 𝑋 ↔ 𝑈 ⊆ 𝑋 ) ) |
6 |
5
|
biimpar |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝑋 ) → 𝑈 ∈ 𝒫 𝑋 ) |
7 |
6
|
3adant3 |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝑋 ∧ 𝑉 ⊆ 𝑋 ) → 𝑈 ∈ 𝒫 𝑋 ) |
8 |
|
elpw2g |
⊢ ( 𝑋 ∈ 𝐶 → ( 𝑉 ∈ 𝒫 𝑋 ↔ 𝑉 ⊆ 𝑋 ) ) |
9 |
3 8
|
syl |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( 𝑉 ∈ 𝒫 𝑋 ↔ 𝑉 ⊆ 𝑋 ) ) |
10 |
9
|
biimpar |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑉 ⊆ 𝑋 ) → 𝑉 ∈ 𝒫 𝑋 ) |
11 |
10
|
3adant2 |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝑋 ∧ 𝑉 ⊆ 𝑋 ) → 𝑉 ∈ 𝒫 𝑋 ) |
12 |
7 11
|
prssd |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝑋 ∧ 𝑉 ⊆ 𝑋 ) → { 𝑈 , 𝑉 } ⊆ 𝒫 𝑋 ) |
13 |
1
|
mrcuni |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ { 𝑈 , 𝑉 } ⊆ 𝒫 𝑋 ) → ( 𝐹 ‘ ∪ { 𝑈 , 𝑉 } ) = ( 𝐹 ‘ ∪ ( 𝐹 “ { 𝑈 , 𝑉 } ) ) ) |
14 |
2 12 13
|
syl2anc |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝑋 ∧ 𝑉 ⊆ 𝑋 ) → ( 𝐹 ‘ ∪ { 𝑈 , 𝑉 } ) = ( 𝐹 ‘ ∪ ( 𝐹 “ { 𝑈 , 𝑉 } ) ) ) |
15 |
|
uniprg |
⊢ ( ( 𝑈 ∈ 𝒫 𝑋 ∧ 𝑉 ∈ 𝒫 𝑋 ) → ∪ { 𝑈 , 𝑉 } = ( 𝑈 ∪ 𝑉 ) ) |
16 |
7 11 15
|
syl2anc |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝑋 ∧ 𝑉 ⊆ 𝑋 ) → ∪ { 𝑈 , 𝑉 } = ( 𝑈 ∪ 𝑉 ) ) |
17 |
16
|
fveq2d |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝑋 ∧ 𝑉 ⊆ 𝑋 ) → ( 𝐹 ‘ ∪ { 𝑈 , 𝑉 } ) = ( 𝐹 ‘ ( 𝑈 ∪ 𝑉 ) ) ) |
18 |
1
|
mrcf |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝐹 : 𝒫 𝑋 ⟶ 𝐶 ) |
19 |
18
|
ffnd |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝐹 Fn 𝒫 𝑋 ) |
20 |
19
|
3ad2ant1 |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝑋 ∧ 𝑉 ⊆ 𝑋 ) → 𝐹 Fn 𝒫 𝑋 ) |
21 |
|
fnimapr |
⊢ ( ( 𝐹 Fn 𝒫 𝑋 ∧ 𝑈 ∈ 𝒫 𝑋 ∧ 𝑉 ∈ 𝒫 𝑋 ) → ( 𝐹 “ { 𝑈 , 𝑉 } ) = { ( 𝐹 ‘ 𝑈 ) , ( 𝐹 ‘ 𝑉 ) } ) |
22 |
20 7 11 21
|
syl3anc |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝑋 ∧ 𝑉 ⊆ 𝑋 ) → ( 𝐹 “ { 𝑈 , 𝑉 } ) = { ( 𝐹 ‘ 𝑈 ) , ( 𝐹 ‘ 𝑉 ) } ) |
23 |
22
|
unieqd |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝑋 ∧ 𝑉 ⊆ 𝑋 ) → ∪ ( 𝐹 “ { 𝑈 , 𝑉 } ) = ∪ { ( 𝐹 ‘ 𝑈 ) , ( 𝐹 ‘ 𝑉 ) } ) |
24 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑈 ) ∈ V |
25 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑉 ) ∈ V |
26 |
24 25
|
unipr |
⊢ ∪ { ( 𝐹 ‘ 𝑈 ) , ( 𝐹 ‘ 𝑉 ) } = ( ( 𝐹 ‘ 𝑈 ) ∪ ( 𝐹 ‘ 𝑉 ) ) |
27 |
23 26
|
eqtrdi |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝑋 ∧ 𝑉 ⊆ 𝑋 ) → ∪ ( 𝐹 “ { 𝑈 , 𝑉 } ) = ( ( 𝐹 ‘ 𝑈 ) ∪ ( 𝐹 ‘ 𝑉 ) ) ) |
28 |
27
|
fveq2d |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝑋 ∧ 𝑉 ⊆ 𝑋 ) → ( 𝐹 ‘ ∪ ( 𝐹 “ { 𝑈 , 𝑉 } ) ) = ( 𝐹 ‘ ( ( 𝐹 ‘ 𝑈 ) ∪ ( 𝐹 ‘ 𝑉 ) ) ) ) |
29 |
14 17 28
|
3eqtr3d |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝑋 ∧ 𝑉 ⊆ 𝑋 ) → ( 𝐹 ‘ ( 𝑈 ∪ 𝑉 ) ) = ( 𝐹 ‘ ( ( 𝐹 ‘ 𝑈 ) ∪ ( 𝐹 ‘ 𝑉 ) ) ) ) |