Step |
Hyp |
Ref |
Expression |
1 |
|
mrcfval.f |
⊢ 𝐹 = ( mrCls ‘ 𝐶 ) |
2 |
|
simpl |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝒫 𝑋 ) → 𝐶 ∈ ( Moore ‘ 𝑋 ) ) |
3 |
|
simpll |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝒫 𝑋 ) ∧ 𝑠 ∈ 𝑈 ) → 𝐶 ∈ ( Moore ‘ 𝑋 ) ) |
4 |
|
ssel2 |
⊢ ( ( 𝑈 ⊆ 𝒫 𝑋 ∧ 𝑠 ∈ 𝑈 ) → 𝑠 ∈ 𝒫 𝑋 ) |
5 |
4
|
elpwid |
⊢ ( ( 𝑈 ⊆ 𝒫 𝑋 ∧ 𝑠 ∈ 𝑈 ) → 𝑠 ⊆ 𝑋 ) |
6 |
5
|
adantll |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝒫 𝑋 ) ∧ 𝑠 ∈ 𝑈 ) → 𝑠 ⊆ 𝑋 ) |
7 |
1
|
mrcssid |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑠 ⊆ 𝑋 ) → 𝑠 ⊆ ( 𝐹 ‘ 𝑠 ) ) |
8 |
3 6 7
|
syl2anc |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝒫 𝑋 ) ∧ 𝑠 ∈ 𝑈 ) → 𝑠 ⊆ ( 𝐹 ‘ 𝑠 ) ) |
9 |
1
|
mrcf |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝐹 : 𝒫 𝑋 ⟶ 𝐶 ) |
10 |
9
|
ffund |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → Fun 𝐹 ) |
11 |
10
|
adantr |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝒫 𝑋 ) → Fun 𝐹 ) |
12 |
9
|
fdmd |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → dom 𝐹 = 𝒫 𝑋 ) |
13 |
12
|
sseq2d |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( 𝑈 ⊆ dom 𝐹 ↔ 𝑈 ⊆ 𝒫 𝑋 ) ) |
14 |
13
|
biimpar |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝒫 𝑋 ) → 𝑈 ⊆ dom 𝐹 ) |
15 |
|
funfvima2 |
⊢ ( ( Fun 𝐹 ∧ 𝑈 ⊆ dom 𝐹 ) → ( 𝑠 ∈ 𝑈 → ( 𝐹 ‘ 𝑠 ) ∈ ( 𝐹 “ 𝑈 ) ) ) |
16 |
11 14 15
|
syl2anc |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝒫 𝑋 ) → ( 𝑠 ∈ 𝑈 → ( 𝐹 ‘ 𝑠 ) ∈ ( 𝐹 “ 𝑈 ) ) ) |
17 |
16
|
imp |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝒫 𝑋 ) ∧ 𝑠 ∈ 𝑈 ) → ( 𝐹 ‘ 𝑠 ) ∈ ( 𝐹 “ 𝑈 ) ) |
18 |
|
elssuni |
⊢ ( ( 𝐹 ‘ 𝑠 ) ∈ ( 𝐹 “ 𝑈 ) → ( 𝐹 ‘ 𝑠 ) ⊆ ∪ ( 𝐹 “ 𝑈 ) ) |
19 |
17 18
|
syl |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝒫 𝑋 ) ∧ 𝑠 ∈ 𝑈 ) → ( 𝐹 ‘ 𝑠 ) ⊆ ∪ ( 𝐹 “ 𝑈 ) ) |
20 |
8 19
|
sstrd |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝒫 𝑋 ) ∧ 𝑠 ∈ 𝑈 ) → 𝑠 ⊆ ∪ ( 𝐹 “ 𝑈 ) ) |
21 |
20
|
ralrimiva |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝒫 𝑋 ) → ∀ 𝑠 ∈ 𝑈 𝑠 ⊆ ∪ ( 𝐹 “ 𝑈 ) ) |
22 |
|
unissb |
⊢ ( ∪ 𝑈 ⊆ ∪ ( 𝐹 “ 𝑈 ) ↔ ∀ 𝑠 ∈ 𝑈 𝑠 ⊆ ∪ ( 𝐹 “ 𝑈 ) ) |
23 |
21 22
|
sylibr |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝒫 𝑋 ) → ∪ 𝑈 ⊆ ∪ ( 𝐹 “ 𝑈 ) ) |
24 |
1
|
mrcssv |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( 𝐹 ‘ 𝑥 ) ⊆ 𝑋 ) |
25 |
24
|
adantr |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝒫 𝑋 ) → ( 𝐹 ‘ 𝑥 ) ⊆ 𝑋 ) |
26 |
25
|
ralrimivw |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝒫 𝑋 ) → ∀ 𝑥 ∈ 𝑈 ( 𝐹 ‘ 𝑥 ) ⊆ 𝑋 ) |
27 |
9
|
ffnd |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝐹 Fn 𝒫 𝑋 ) |
28 |
|
sseq1 |
⊢ ( 𝑠 = ( 𝐹 ‘ 𝑥 ) → ( 𝑠 ⊆ 𝑋 ↔ ( 𝐹 ‘ 𝑥 ) ⊆ 𝑋 ) ) |
29 |
28
|
ralima |
⊢ ( ( 𝐹 Fn 𝒫 𝑋 ∧ 𝑈 ⊆ 𝒫 𝑋 ) → ( ∀ 𝑠 ∈ ( 𝐹 “ 𝑈 ) 𝑠 ⊆ 𝑋 ↔ ∀ 𝑥 ∈ 𝑈 ( 𝐹 ‘ 𝑥 ) ⊆ 𝑋 ) ) |
30 |
27 29
|
sylan |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝒫 𝑋 ) → ( ∀ 𝑠 ∈ ( 𝐹 “ 𝑈 ) 𝑠 ⊆ 𝑋 ↔ ∀ 𝑥 ∈ 𝑈 ( 𝐹 ‘ 𝑥 ) ⊆ 𝑋 ) ) |
31 |
26 30
|
mpbird |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝒫 𝑋 ) → ∀ 𝑠 ∈ ( 𝐹 “ 𝑈 ) 𝑠 ⊆ 𝑋 ) |
32 |
|
unissb |
⊢ ( ∪ ( 𝐹 “ 𝑈 ) ⊆ 𝑋 ↔ ∀ 𝑠 ∈ ( 𝐹 “ 𝑈 ) 𝑠 ⊆ 𝑋 ) |
33 |
31 32
|
sylibr |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝒫 𝑋 ) → ∪ ( 𝐹 “ 𝑈 ) ⊆ 𝑋 ) |
34 |
1
|
mrcss |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∪ 𝑈 ⊆ ∪ ( 𝐹 “ 𝑈 ) ∧ ∪ ( 𝐹 “ 𝑈 ) ⊆ 𝑋 ) → ( 𝐹 ‘ ∪ 𝑈 ) ⊆ ( 𝐹 ‘ ∪ ( 𝐹 “ 𝑈 ) ) ) |
35 |
2 23 33 34
|
syl3anc |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝒫 𝑋 ) → ( 𝐹 ‘ ∪ 𝑈 ) ⊆ ( 𝐹 ‘ ∪ ( 𝐹 “ 𝑈 ) ) ) |
36 |
|
simpll |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝒫 𝑋 ) ∧ 𝑥 ∈ 𝑈 ) → 𝐶 ∈ ( Moore ‘ 𝑋 ) ) |
37 |
|
elssuni |
⊢ ( 𝑥 ∈ 𝑈 → 𝑥 ⊆ ∪ 𝑈 ) |
38 |
37
|
adantl |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝒫 𝑋 ) ∧ 𝑥 ∈ 𝑈 ) → 𝑥 ⊆ ∪ 𝑈 ) |
39 |
|
sspwuni |
⊢ ( 𝑈 ⊆ 𝒫 𝑋 ↔ ∪ 𝑈 ⊆ 𝑋 ) |
40 |
39
|
biimpi |
⊢ ( 𝑈 ⊆ 𝒫 𝑋 → ∪ 𝑈 ⊆ 𝑋 ) |
41 |
40
|
adantl |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝒫 𝑋 ) → ∪ 𝑈 ⊆ 𝑋 ) |
42 |
41
|
adantr |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝒫 𝑋 ) ∧ 𝑥 ∈ 𝑈 ) → ∪ 𝑈 ⊆ 𝑋 ) |
43 |
1
|
mrcss |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ ∪ 𝑈 ∧ ∪ 𝑈 ⊆ 𝑋 ) → ( 𝐹 ‘ 𝑥 ) ⊆ ( 𝐹 ‘ ∪ 𝑈 ) ) |
44 |
36 38 42 43
|
syl3anc |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝒫 𝑋 ) ∧ 𝑥 ∈ 𝑈 ) → ( 𝐹 ‘ 𝑥 ) ⊆ ( 𝐹 ‘ ∪ 𝑈 ) ) |
45 |
44
|
ralrimiva |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝒫 𝑋 ) → ∀ 𝑥 ∈ 𝑈 ( 𝐹 ‘ 𝑥 ) ⊆ ( 𝐹 ‘ ∪ 𝑈 ) ) |
46 |
|
sseq1 |
⊢ ( 𝑠 = ( 𝐹 ‘ 𝑥 ) → ( 𝑠 ⊆ ( 𝐹 ‘ ∪ 𝑈 ) ↔ ( 𝐹 ‘ 𝑥 ) ⊆ ( 𝐹 ‘ ∪ 𝑈 ) ) ) |
47 |
46
|
ralima |
⊢ ( ( 𝐹 Fn 𝒫 𝑋 ∧ 𝑈 ⊆ 𝒫 𝑋 ) → ( ∀ 𝑠 ∈ ( 𝐹 “ 𝑈 ) 𝑠 ⊆ ( 𝐹 ‘ ∪ 𝑈 ) ↔ ∀ 𝑥 ∈ 𝑈 ( 𝐹 ‘ 𝑥 ) ⊆ ( 𝐹 ‘ ∪ 𝑈 ) ) ) |
48 |
27 47
|
sylan |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝒫 𝑋 ) → ( ∀ 𝑠 ∈ ( 𝐹 “ 𝑈 ) 𝑠 ⊆ ( 𝐹 ‘ ∪ 𝑈 ) ↔ ∀ 𝑥 ∈ 𝑈 ( 𝐹 ‘ 𝑥 ) ⊆ ( 𝐹 ‘ ∪ 𝑈 ) ) ) |
49 |
45 48
|
mpbird |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝒫 𝑋 ) → ∀ 𝑠 ∈ ( 𝐹 “ 𝑈 ) 𝑠 ⊆ ( 𝐹 ‘ ∪ 𝑈 ) ) |
50 |
|
unissb |
⊢ ( ∪ ( 𝐹 “ 𝑈 ) ⊆ ( 𝐹 ‘ ∪ 𝑈 ) ↔ ∀ 𝑠 ∈ ( 𝐹 “ 𝑈 ) 𝑠 ⊆ ( 𝐹 ‘ ∪ 𝑈 ) ) |
51 |
49 50
|
sylibr |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝒫 𝑋 ) → ∪ ( 𝐹 “ 𝑈 ) ⊆ ( 𝐹 ‘ ∪ 𝑈 ) ) |
52 |
1
|
mrcssv |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( 𝐹 ‘ ∪ 𝑈 ) ⊆ 𝑋 ) |
53 |
52
|
adantr |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝒫 𝑋 ) → ( 𝐹 ‘ ∪ 𝑈 ) ⊆ 𝑋 ) |
54 |
1
|
mrcss |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∪ ( 𝐹 “ 𝑈 ) ⊆ ( 𝐹 ‘ ∪ 𝑈 ) ∧ ( 𝐹 ‘ ∪ 𝑈 ) ⊆ 𝑋 ) → ( 𝐹 ‘ ∪ ( 𝐹 “ 𝑈 ) ) ⊆ ( 𝐹 ‘ ( 𝐹 ‘ ∪ 𝑈 ) ) ) |
55 |
2 51 53 54
|
syl3anc |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝒫 𝑋 ) → ( 𝐹 ‘ ∪ ( 𝐹 “ 𝑈 ) ) ⊆ ( 𝐹 ‘ ( 𝐹 ‘ ∪ 𝑈 ) ) ) |
56 |
1
|
mrcidm |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∪ 𝑈 ⊆ 𝑋 ) → ( 𝐹 ‘ ( 𝐹 ‘ ∪ 𝑈 ) ) = ( 𝐹 ‘ ∪ 𝑈 ) ) |
57 |
2 41 56
|
syl2anc |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝒫 𝑋 ) → ( 𝐹 ‘ ( 𝐹 ‘ ∪ 𝑈 ) ) = ( 𝐹 ‘ ∪ 𝑈 ) ) |
58 |
55 57
|
sseqtrd |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝒫 𝑋 ) → ( 𝐹 ‘ ∪ ( 𝐹 “ 𝑈 ) ) ⊆ ( 𝐹 ‘ ∪ 𝑈 ) ) |
59 |
35 58
|
eqssd |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝒫 𝑋 ) → ( 𝐹 ‘ ∪ 𝑈 ) = ( 𝐹 ‘ ∪ ( 𝐹 “ 𝑈 ) ) ) |