Metamath Proof Explorer


Theorem mreclat

Description: A Moore space is a complete lattice under inclusion. (Contributed by Zhi Wang, 30-Sep-2024)

Ref Expression
Hypothesis mreclatGOOD.i 𝐼 = ( toInc ‘ 𝐶 )
Assertion mreclat ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝐼 ∈ CLat )

Proof

Step Hyp Ref Expression
1 mreclatGOOD.i 𝐼 = ( toInc ‘ 𝐶 )
2 1 ipobas ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝐶 = ( Base ‘ 𝐼 ) )
3 eqidd ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( lub ‘ 𝐼 ) = ( lub ‘ 𝐼 ) )
4 eqidd ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( glb ‘ 𝐼 ) = ( glb ‘ 𝐼 ) )
5 1 ipopos 𝐼 ∈ Poset
6 5 a1i ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝐼 ∈ Poset )
7 mreuniss ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥𝐶 ) → 𝑥𝑋 )
8 eqid ( mrCls ‘ 𝐶 ) = ( mrCls ‘ 𝐶 )
9 8 mrccl ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥𝑋 ) → ( ( mrCls ‘ 𝐶 ) ‘ 𝑥 ) ∈ 𝐶 )
10 7 9 syldan ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥𝐶 ) → ( ( mrCls ‘ 𝐶 ) ‘ 𝑥 ) ∈ 𝐶 )
11 simpl ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥𝐶 ) → 𝐶 ∈ ( Moore ‘ 𝑋 ) )
12 simpr ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥𝐶 ) → 𝑥𝐶 )
13 eqidd ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥𝐶 ) → ( lub ‘ 𝐼 ) = ( lub ‘ 𝐼 ) )
14 8 mrcval ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥𝑋 ) → ( ( mrCls ‘ 𝐶 ) ‘ 𝑥 ) = { 𝑦𝐶 𝑥𝑦 } )
15 7 14 syldan ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥𝐶 ) → ( ( mrCls ‘ 𝐶 ) ‘ 𝑥 ) = { 𝑦𝐶 𝑥𝑦 } )
16 1 11 12 13 15 ipolubdm ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥𝐶 ) → ( 𝑥 ∈ dom ( lub ‘ 𝐼 ) ↔ ( ( mrCls ‘ 𝐶 ) ‘ 𝑥 ) ∈ 𝐶 ) )
17 10 16 mpbird ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥𝐶 ) → 𝑥 ∈ dom ( lub ‘ 𝐼 ) )
18 ssv 𝑦 ⊆ V
19 int0 ∅ = V
20 18 19 sseqtrri 𝑦
21 simplr ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥𝐶 ) ∧ 𝑥 = ∅ ) ∧ 𝑦𝐶 ) → 𝑥 = ∅ )
22 21 inteqd ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥𝐶 ) ∧ 𝑥 = ∅ ) ∧ 𝑦𝐶 ) → 𝑥 = ∅ )
23 20 22 sseqtrrid ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥𝐶 ) ∧ 𝑥 = ∅ ) ∧ 𝑦𝐶 ) → 𝑦 𝑥 )
24 23 rabeqcda ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥𝐶 ) ∧ 𝑥 = ∅ ) → { 𝑦𝐶𝑦 𝑥 } = 𝐶 )
25 24 unieqd ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥𝐶 ) ∧ 𝑥 = ∅ ) → { 𝑦𝐶𝑦 𝑥 } = 𝐶 )
26 mreuni ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝐶 = 𝑋 )
27 mre1cl ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝑋𝐶 )
28 26 27 eqeltrd ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝐶𝐶 )
29 28 ad2antrr ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥𝐶 ) ∧ 𝑥 = ∅ ) → 𝐶𝐶 )
30 25 29 eqeltrd ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥𝐶 ) ∧ 𝑥 = ∅ ) → { 𝑦𝐶𝑦 𝑥 } ∈ 𝐶 )
31 mreintcl ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥𝐶𝑥 ≠ ∅ ) → 𝑥𝐶 )
32 unimax ( 𝑥𝐶 { 𝑦𝐶𝑦 𝑥 } = 𝑥 )
33 31 32 syl ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥𝐶𝑥 ≠ ∅ ) → { 𝑦𝐶𝑦 𝑥 } = 𝑥 )
34 33 31 eqeltrd ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥𝐶𝑥 ≠ ∅ ) → { 𝑦𝐶𝑦 𝑥 } ∈ 𝐶 )
35 34 3expa ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥𝐶 ) ∧ 𝑥 ≠ ∅ ) → { 𝑦𝐶𝑦 𝑥 } ∈ 𝐶 )
36 30 35 pm2.61dane ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥𝐶 ) → { 𝑦𝐶𝑦 𝑥 } ∈ 𝐶 )
37 eqidd ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥𝐶 ) → ( glb ‘ 𝐼 ) = ( glb ‘ 𝐼 ) )
38 eqidd ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥𝐶 ) → { 𝑦𝐶𝑦 𝑥 } = { 𝑦𝐶𝑦 𝑥 } )
39 1 11 12 37 38 ipoglbdm ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥𝐶 ) → ( 𝑥 ∈ dom ( glb ‘ 𝐼 ) ↔ { 𝑦𝐶𝑦 𝑥 } ∈ 𝐶 ) )
40 36 39 mpbird ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥𝐶 ) → 𝑥 ∈ dom ( glb ‘ 𝐼 ) )
41 2 3 4 6 17 40 isclatd ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝐼 ∈ CLat )