Step |
Hyp |
Ref |
Expression |
1 |
|
mreclat.i |
⊢ 𝐼 = ( toInc ‘ 𝐶 ) |
2 |
|
isclatBAD. |
⊢ ( 𝐼 ∈ CLat ↔ ( 𝐼 ∈ Poset ∧ ∀ 𝑥 ( 𝑥 ⊆ ( Base ‘ 𝐼 ) → ( ( ( lub ‘ 𝐼 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐼 ) ∧ ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐼 ) ) ) ) ) |
3 |
1
|
ipopos |
⊢ 𝐼 ∈ Poset |
4 |
3
|
a1i |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝐼 ∈ Poset ) |
5 |
|
eqid |
⊢ ( mrCls ‘ 𝐶 ) = ( mrCls ‘ 𝐶 ) |
6 |
|
eqid |
⊢ ( lub ‘ 𝐼 ) = ( lub ‘ 𝐼 ) |
7 |
1 5 6
|
mrelatlub |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) → ( ( lub ‘ 𝐼 ) ‘ 𝑥 ) = ( ( mrCls ‘ 𝐶 ) ‘ ∪ 𝑥 ) ) |
8 |
|
uniss |
⊢ ( 𝑥 ⊆ 𝐶 → ∪ 𝑥 ⊆ ∪ 𝐶 ) |
9 |
8
|
adantl |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) → ∪ 𝑥 ⊆ ∪ 𝐶 ) |
10 |
|
mreuni |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ∪ 𝐶 = 𝑋 ) |
11 |
10
|
adantr |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) → ∪ 𝐶 = 𝑋 ) |
12 |
9 11
|
sseqtrd |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) → ∪ 𝑥 ⊆ 𝑋 ) |
13 |
5
|
mrccl |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∪ 𝑥 ⊆ 𝑋 ) → ( ( mrCls ‘ 𝐶 ) ‘ ∪ 𝑥 ) ∈ 𝐶 ) |
14 |
12 13
|
syldan |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) → ( ( mrCls ‘ 𝐶 ) ‘ ∪ 𝑥 ) ∈ 𝐶 ) |
15 |
7 14
|
eqeltrd |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) → ( ( lub ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐶 ) |
16 |
|
fveq2 |
⊢ ( 𝑥 = ∅ → ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) = ( ( glb ‘ 𝐼 ) ‘ ∅ ) ) |
17 |
16
|
adantl |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) ∧ 𝑥 = ∅ ) → ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) = ( ( glb ‘ 𝐼 ) ‘ ∅ ) ) |
18 |
|
eqid |
⊢ ( glb ‘ 𝐼 ) = ( glb ‘ 𝐼 ) |
19 |
1 18
|
mrelatglb0 |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( ( glb ‘ 𝐼 ) ‘ ∅ ) = 𝑋 ) |
20 |
19
|
ad2antrr |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) ∧ 𝑥 = ∅ ) → ( ( glb ‘ 𝐼 ) ‘ ∅ ) = 𝑋 ) |
21 |
17 20
|
eqtrd |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) ∧ 𝑥 = ∅ ) → ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) = 𝑋 ) |
22 |
|
mre1cl |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝑋 ∈ 𝐶 ) |
23 |
22
|
ad2antrr |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) ∧ 𝑥 = ∅ ) → 𝑋 ∈ 𝐶 ) |
24 |
21 23
|
eqeltrd |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) ∧ 𝑥 = ∅ ) → ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐶 ) |
25 |
1 18
|
mrelatglb |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅ ) → ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) = ∩ 𝑥 ) |
26 |
|
mreintcl |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅ ) → ∩ 𝑥 ∈ 𝐶 ) |
27 |
25 26
|
eqeltrd |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅ ) → ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐶 ) |
28 |
27
|
3expa |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) ∧ 𝑥 ≠ ∅ ) → ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐶 ) |
29 |
24 28
|
pm2.61dane |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) → ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐶 ) |
30 |
15 29
|
jca |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) → ( ( ( lub ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐶 ∧ ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐶 ) ) |
31 |
30
|
ex |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( 𝑥 ⊆ 𝐶 → ( ( ( lub ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐶 ∧ ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐶 ) ) ) |
32 |
1
|
ipobas |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝐶 = ( Base ‘ 𝐼 ) ) |
33 |
|
sseq2 |
⊢ ( 𝐶 = ( Base ‘ 𝐼 ) → ( 𝑥 ⊆ 𝐶 ↔ 𝑥 ⊆ ( Base ‘ 𝐼 ) ) ) |
34 |
|
eleq2 |
⊢ ( 𝐶 = ( Base ‘ 𝐼 ) → ( ( ( lub ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐶 ↔ ( ( lub ‘ 𝐼 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐼 ) ) ) |
35 |
|
eleq2 |
⊢ ( 𝐶 = ( Base ‘ 𝐼 ) → ( ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐶 ↔ ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐼 ) ) ) |
36 |
34 35
|
anbi12d |
⊢ ( 𝐶 = ( Base ‘ 𝐼 ) → ( ( ( ( lub ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐶 ∧ ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐶 ) ↔ ( ( ( lub ‘ 𝐼 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐼 ) ∧ ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐼 ) ) ) ) |
37 |
33 36
|
imbi12d |
⊢ ( 𝐶 = ( Base ‘ 𝐼 ) → ( ( 𝑥 ⊆ 𝐶 → ( ( ( lub ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐶 ∧ ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐶 ) ) ↔ ( 𝑥 ⊆ ( Base ‘ 𝐼 ) → ( ( ( lub ‘ 𝐼 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐼 ) ∧ ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐼 ) ) ) ) ) |
38 |
32 37
|
syl |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( ( 𝑥 ⊆ 𝐶 → ( ( ( lub ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐶 ∧ ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐶 ) ) ↔ ( 𝑥 ⊆ ( Base ‘ 𝐼 ) → ( ( ( lub ‘ 𝐼 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐼 ) ∧ ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐼 ) ) ) ) ) |
39 |
31 38
|
mpbid |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( 𝑥 ⊆ ( Base ‘ 𝐼 ) → ( ( ( lub ‘ 𝐼 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐼 ) ∧ ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐼 ) ) ) ) |
40 |
39
|
alrimiv |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ∀ 𝑥 ( 𝑥 ⊆ ( Base ‘ 𝐼 ) → ( ( ( lub ‘ 𝐼 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐼 ) ∧ ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐼 ) ) ) ) |
41 |
4 40 2
|
sylanbrc |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝐼 ∈ CLat ) |