| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							mreclatBAD. | 
							⊢ ( ( ( LSubSp ‘ 𝑊 )  ∩  ( Clsd ‘ ( TopOpen ‘ 𝑊 ) ) )  ∈  ( Moore ‘ ∪  ( TopOpen ‘ 𝑊 ) )  →  ( toInc ‘ ( ( LSubSp ‘ 𝑊 )  ∩  ( Clsd ‘ ( TopOpen ‘ 𝑊 ) ) ) )  ∈  CLat )  | 
						
						
							| 2 | 
							
								
							 | 
							fvex | 
							⊢ ( TopOpen ‘ 𝑊 )  ∈  V  | 
						
						
							| 3 | 
							
								2
							 | 
							uniex | 
							⊢ ∪  ( TopOpen ‘ 𝑊 )  ∈  V  | 
						
						
							| 4 | 
							
								
							 | 
							mremre | 
							⊢ ( ∪  ( TopOpen ‘ 𝑊 )  ∈  V  →  ( Moore ‘ ∪  ( TopOpen ‘ 𝑊 ) )  ∈  ( Moore ‘ 𝒫  ∪  ( TopOpen ‘ 𝑊 ) ) )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							mp1i | 
							⊢ ( 𝑊  ∈  ( TopSp  ∩  LMod )  →  ( Moore ‘ ∪  ( TopOpen ‘ 𝑊 ) )  ∈  ( Moore ‘ 𝒫  ∪  ( TopOpen ‘ 𝑊 ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							elinel2 | 
							⊢ ( 𝑊  ∈  ( TopSp  ∩  LMod )  →  𝑊  ∈  LMod )  | 
						
						
							| 7 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝑊 )  =  ( Base ‘ 𝑊 )  | 
						
						
							| 8 | 
							
								
							 | 
							eqid | 
							⊢ ( LSubSp ‘ 𝑊 )  =  ( LSubSp ‘ 𝑊 )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							lssmre | 
							⊢ ( 𝑊  ∈  LMod  →  ( LSubSp ‘ 𝑊 )  ∈  ( Moore ‘ ( Base ‘ 𝑊 ) ) )  | 
						
						
							| 10 | 
							
								6 9
							 | 
							syl | 
							⊢ ( 𝑊  ∈  ( TopSp  ∩  LMod )  →  ( LSubSp ‘ 𝑊 )  ∈  ( Moore ‘ ( Base ‘ 𝑊 ) ) )  | 
						
						
							| 11 | 
							
								
							 | 
							elinel1 | 
							⊢ ( 𝑊  ∈  ( TopSp  ∩  LMod )  →  𝑊  ∈  TopSp )  | 
						
						
							| 12 | 
							
								
							 | 
							eqid | 
							⊢ ( TopOpen ‘ 𝑊 )  =  ( TopOpen ‘ 𝑊 )  | 
						
						
							| 13 | 
							
								7 12
							 | 
							tpsuni | 
							⊢ ( 𝑊  ∈  TopSp  →  ( Base ‘ 𝑊 )  =  ∪  ( TopOpen ‘ 𝑊 ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							fveq2d | 
							⊢ ( 𝑊  ∈  TopSp  →  ( Moore ‘ ( Base ‘ 𝑊 ) )  =  ( Moore ‘ ∪  ( TopOpen ‘ 𝑊 ) ) )  | 
						
						
							| 15 | 
							
								11 14
							 | 
							syl | 
							⊢ ( 𝑊  ∈  ( TopSp  ∩  LMod )  →  ( Moore ‘ ( Base ‘ 𝑊 ) )  =  ( Moore ‘ ∪  ( TopOpen ‘ 𝑊 ) ) )  | 
						
						
							| 16 | 
							
								10 15
							 | 
							eleqtrd | 
							⊢ ( 𝑊  ∈  ( TopSp  ∩  LMod )  →  ( LSubSp ‘ 𝑊 )  ∈  ( Moore ‘ ∪  ( TopOpen ‘ 𝑊 ) ) )  | 
						
						
							| 17 | 
							
								12
							 | 
							tpstop | 
							⊢ ( 𝑊  ∈  TopSp  →  ( TopOpen ‘ 𝑊 )  ∈  Top )  | 
						
						
							| 18 | 
							
								
							 | 
							eqid | 
							⊢ ∪  ( TopOpen ‘ 𝑊 )  =  ∪  ( TopOpen ‘ 𝑊 )  | 
						
						
							| 19 | 
							
								18
							 | 
							cldmre | 
							⊢ ( ( TopOpen ‘ 𝑊 )  ∈  Top  →  ( Clsd ‘ ( TopOpen ‘ 𝑊 ) )  ∈  ( Moore ‘ ∪  ( TopOpen ‘ 𝑊 ) ) )  | 
						
						
							| 20 | 
							
								11 17 19
							 | 
							3syl | 
							⊢ ( 𝑊  ∈  ( TopSp  ∩  LMod )  →  ( Clsd ‘ ( TopOpen ‘ 𝑊 ) )  ∈  ( Moore ‘ ∪  ( TopOpen ‘ 𝑊 ) ) )  | 
						
						
							| 21 | 
							
								
							 | 
							mreincl | 
							⊢ ( ( ( Moore ‘ ∪  ( TopOpen ‘ 𝑊 ) )  ∈  ( Moore ‘ 𝒫  ∪  ( TopOpen ‘ 𝑊 ) )  ∧  ( LSubSp ‘ 𝑊 )  ∈  ( Moore ‘ ∪  ( TopOpen ‘ 𝑊 ) )  ∧  ( Clsd ‘ ( TopOpen ‘ 𝑊 ) )  ∈  ( Moore ‘ ∪  ( TopOpen ‘ 𝑊 ) ) )  →  ( ( LSubSp ‘ 𝑊 )  ∩  ( Clsd ‘ ( TopOpen ‘ 𝑊 ) ) )  ∈  ( Moore ‘ ∪  ( TopOpen ‘ 𝑊 ) ) )  | 
						
						
							| 22 | 
							
								5 16 20 21
							 | 
							syl3anc | 
							⊢ ( 𝑊  ∈  ( TopSp  ∩  LMod )  →  ( ( LSubSp ‘ 𝑊 )  ∩  ( Clsd ‘ ( TopOpen ‘ 𝑊 ) ) )  ∈  ( Moore ‘ ∪  ( TopOpen ‘ 𝑊 ) ) )  | 
						
						
							| 23 | 
							
								22 1
							 | 
							syl | 
							⊢ ( 𝑊  ∈  ( TopSp  ∩  LMod )  →  ( toInc ‘ ( ( LSubSp ‘ 𝑊 )  ∩  ( Clsd ‘ ( TopOpen ‘ 𝑊 ) ) ) )  ∈  CLat )  |