| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mreexd.1 | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 2 |  | mreexd.2 | ⊢ ( 𝜑  →  ∀ 𝑠  ∈  𝒫  𝑋 ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  ( ( 𝑁 ‘ ( 𝑠  ∪  { 𝑦 } ) )  ∖  ( 𝑁 ‘ 𝑠 ) ) 𝑦  ∈  ( 𝑁 ‘ ( 𝑠  ∪  { 𝑧 } ) ) ) | 
						
							| 3 |  | mreexd.3 | ⊢ ( 𝜑  →  𝑆  ⊆  𝑋 ) | 
						
							| 4 |  | mreexd.4 | ⊢ ( 𝜑  →  𝑌  ∈  𝑋 ) | 
						
							| 5 |  | mreexd.5 | ⊢ ( 𝜑  →  𝑍  ∈  ( 𝑁 ‘ ( 𝑆  ∪  { 𝑌 } ) ) ) | 
						
							| 6 |  | mreexd.6 | ⊢ ( 𝜑  →  ¬  𝑍  ∈  ( 𝑁 ‘ 𝑆 ) ) | 
						
							| 7 | 1 3 | sselpwd | ⊢ ( 𝜑  →  𝑆  ∈  𝒫  𝑋 ) | 
						
							| 8 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  =  𝑆 )  →  𝑌  ∈  𝑋 ) | 
						
							| 9 | 5 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑠  =  𝑆 )  ∧  𝑦  =  𝑌 )  →  𝑍  ∈  ( 𝑁 ‘ ( 𝑆  ∪  { 𝑌 } ) ) ) | 
						
							| 10 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑠  =  𝑆 )  ∧  𝑦  =  𝑌 )  →  𝑠  =  𝑆 ) | 
						
							| 11 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑠  =  𝑆 )  ∧  𝑦  =  𝑌 )  →  𝑦  =  𝑌 ) | 
						
							| 12 | 11 | sneqd | ⊢ ( ( ( 𝜑  ∧  𝑠  =  𝑆 )  ∧  𝑦  =  𝑌 )  →  { 𝑦 }  =  { 𝑌 } ) | 
						
							| 13 | 10 12 | uneq12d | ⊢ ( ( ( 𝜑  ∧  𝑠  =  𝑆 )  ∧  𝑦  =  𝑌 )  →  ( 𝑠  ∪  { 𝑦 } )  =  ( 𝑆  ∪  { 𝑌 } ) ) | 
						
							| 14 | 13 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑠  =  𝑆 )  ∧  𝑦  =  𝑌 )  →  ( 𝑁 ‘ ( 𝑠  ∪  { 𝑦 } ) )  =  ( 𝑁 ‘ ( 𝑆  ∪  { 𝑌 } ) ) ) | 
						
							| 15 | 9 14 | eleqtrrd | ⊢ ( ( ( 𝜑  ∧  𝑠  =  𝑆 )  ∧  𝑦  =  𝑌 )  →  𝑍  ∈  ( 𝑁 ‘ ( 𝑠  ∪  { 𝑦 } ) ) ) | 
						
							| 16 | 6 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑠  =  𝑆 )  ∧  𝑦  =  𝑌 )  →  ¬  𝑍  ∈  ( 𝑁 ‘ 𝑆 ) ) | 
						
							| 17 | 10 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑠  =  𝑆 )  ∧  𝑦  =  𝑌 )  →  ( 𝑁 ‘ 𝑠 )  =  ( 𝑁 ‘ 𝑆 ) ) | 
						
							| 18 | 16 17 | neleqtrrd | ⊢ ( ( ( 𝜑  ∧  𝑠  =  𝑆 )  ∧  𝑦  =  𝑌 )  →  ¬  𝑍  ∈  ( 𝑁 ‘ 𝑠 ) ) | 
						
							| 19 | 15 18 | eldifd | ⊢ ( ( ( 𝜑  ∧  𝑠  =  𝑆 )  ∧  𝑦  =  𝑌 )  →  𝑍  ∈  ( ( 𝑁 ‘ ( 𝑠  ∪  { 𝑦 } ) )  ∖  ( 𝑁 ‘ 𝑠 ) ) ) | 
						
							| 20 |  | simplr | ⊢ ( ( ( ( 𝜑  ∧  𝑠  =  𝑆 )  ∧  𝑦  =  𝑌 )  ∧  𝑧  =  𝑍 )  →  𝑦  =  𝑌 ) | 
						
							| 21 |  | simpllr | ⊢ ( ( ( ( 𝜑  ∧  𝑠  =  𝑆 )  ∧  𝑦  =  𝑌 )  ∧  𝑧  =  𝑍 )  →  𝑠  =  𝑆 ) | 
						
							| 22 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  𝑠  =  𝑆 )  ∧  𝑦  =  𝑌 )  ∧  𝑧  =  𝑍 )  →  𝑧  =  𝑍 ) | 
						
							| 23 | 22 | sneqd | ⊢ ( ( ( ( 𝜑  ∧  𝑠  =  𝑆 )  ∧  𝑦  =  𝑌 )  ∧  𝑧  =  𝑍 )  →  { 𝑧 }  =  { 𝑍 } ) | 
						
							| 24 | 21 23 | uneq12d | ⊢ ( ( ( ( 𝜑  ∧  𝑠  =  𝑆 )  ∧  𝑦  =  𝑌 )  ∧  𝑧  =  𝑍 )  →  ( 𝑠  ∪  { 𝑧 } )  =  ( 𝑆  ∪  { 𝑍 } ) ) | 
						
							| 25 | 24 | fveq2d | ⊢ ( ( ( ( 𝜑  ∧  𝑠  =  𝑆 )  ∧  𝑦  =  𝑌 )  ∧  𝑧  =  𝑍 )  →  ( 𝑁 ‘ ( 𝑠  ∪  { 𝑧 } ) )  =  ( 𝑁 ‘ ( 𝑆  ∪  { 𝑍 } ) ) ) | 
						
							| 26 | 20 25 | eleq12d | ⊢ ( ( ( ( 𝜑  ∧  𝑠  =  𝑆 )  ∧  𝑦  =  𝑌 )  ∧  𝑧  =  𝑍 )  →  ( 𝑦  ∈  ( 𝑁 ‘ ( 𝑠  ∪  { 𝑧 } ) )  ↔  𝑌  ∈  ( 𝑁 ‘ ( 𝑆  ∪  { 𝑍 } ) ) ) ) | 
						
							| 27 | 19 26 | rspcdv | ⊢ ( ( ( 𝜑  ∧  𝑠  =  𝑆 )  ∧  𝑦  =  𝑌 )  →  ( ∀ 𝑧  ∈  ( ( 𝑁 ‘ ( 𝑠  ∪  { 𝑦 } ) )  ∖  ( 𝑁 ‘ 𝑠 ) ) 𝑦  ∈  ( 𝑁 ‘ ( 𝑠  ∪  { 𝑧 } ) )  →  𝑌  ∈  ( 𝑁 ‘ ( 𝑆  ∪  { 𝑍 } ) ) ) ) | 
						
							| 28 | 8 27 | rspcimdv | ⊢ ( ( 𝜑  ∧  𝑠  =  𝑆 )  →  ( ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  ( ( 𝑁 ‘ ( 𝑠  ∪  { 𝑦 } ) )  ∖  ( 𝑁 ‘ 𝑠 ) ) 𝑦  ∈  ( 𝑁 ‘ ( 𝑠  ∪  { 𝑧 } ) )  →  𝑌  ∈  ( 𝑁 ‘ ( 𝑆  ∪  { 𝑍 } ) ) ) ) | 
						
							| 29 | 7 28 | rspcimdv | ⊢ ( 𝜑  →  ( ∀ 𝑠  ∈  𝒫  𝑋 ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  ( ( 𝑁 ‘ ( 𝑠  ∪  { 𝑦 } ) )  ∖  ( 𝑁 ‘ 𝑠 ) ) 𝑦  ∈  ( 𝑁 ‘ ( 𝑠  ∪  { 𝑧 } ) )  →  𝑌  ∈  ( 𝑁 ‘ ( 𝑆  ∪  { 𝑍 } ) ) ) ) | 
						
							| 30 | 2 29 | mpd | ⊢ ( 𝜑  →  𝑌  ∈  ( 𝑁 ‘ ( 𝑆  ∪  { 𝑍 } ) ) ) |