Step |
Hyp |
Ref |
Expression |
1 |
|
mreexdomd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ( Moore ‘ 𝑋 ) ) |
2 |
|
mreexdomd.2 |
⊢ 𝑁 = ( mrCls ‘ 𝐴 ) |
3 |
|
mreexdomd.3 |
⊢ 𝐼 = ( mrInd ‘ 𝐴 ) |
4 |
|
mreexdomd.4 |
⊢ ( 𝜑 → ∀ 𝑠 ∈ 𝒫 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ ( ( 𝑁 ‘ ( 𝑠 ∪ { 𝑦 } ) ) ∖ ( 𝑁 ‘ 𝑠 ) ) 𝑦 ∈ ( 𝑁 ‘ ( 𝑠 ∪ { 𝑧 } ) ) ) |
5 |
|
mreexdomd.5 |
⊢ ( 𝜑 → 𝑆 ⊆ ( 𝑁 ‘ 𝑇 ) ) |
6 |
|
mreexdomd.6 |
⊢ ( 𝜑 → 𝑇 ⊆ 𝑋 ) |
7 |
|
mreexdomd.7 |
⊢ ( 𝜑 → ( 𝑆 ∈ Fin ∨ 𝑇 ∈ Fin ) ) |
8 |
|
mreexdomd.8 |
⊢ ( 𝜑 → 𝑆 ∈ 𝐼 ) |
9 |
3 1 8
|
mrissd |
⊢ ( 𝜑 → 𝑆 ⊆ 𝑋 ) |
10 |
|
dif0 |
⊢ ( 𝑋 ∖ ∅ ) = 𝑋 |
11 |
9 10
|
sseqtrrdi |
⊢ ( 𝜑 → 𝑆 ⊆ ( 𝑋 ∖ ∅ ) ) |
12 |
6 10
|
sseqtrrdi |
⊢ ( 𝜑 → 𝑇 ⊆ ( 𝑋 ∖ ∅ ) ) |
13 |
|
un0 |
⊢ ( 𝑇 ∪ ∅ ) = 𝑇 |
14 |
13
|
fveq2i |
⊢ ( 𝑁 ‘ ( 𝑇 ∪ ∅ ) ) = ( 𝑁 ‘ 𝑇 ) |
15 |
5 14
|
sseqtrrdi |
⊢ ( 𝜑 → 𝑆 ⊆ ( 𝑁 ‘ ( 𝑇 ∪ ∅ ) ) ) |
16 |
|
un0 |
⊢ ( 𝑆 ∪ ∅ ) = 𝑆 |
17 |
16 8
|
eqeltrid |
⊢ ( 𝜑 → ( 𝑆 ∪ ∅ ) ∈ 𝐼 ) |
18 |
1 2 3 4 11 12 15 17 7
|
mreexexd |
⊢ ( 𝜑 → ∃ 𝑖 ∈ 𝒫 𝑇 ( 𝑆 ≈ 𝑖 ∧ ( 𝑖 ∪ ∅ ) ∈ 𝐼 ) ) |
19 |
|
simprrl |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝒫 𝑇 ∧ ( 𝑆 ≈ 𝑖 ∧ ( 𝑖 ∪ ∅ ) ∈ 𝐼 ) ) ) → 𝑆 ≈ 𝑖 ) |
20 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝒫 𝑇 ∧ ( 𝑆 ≈ 𝑖 ∧ ( 𝑖 ∪ ∅ ) ∈ 𝐼 ) ) ) → 𝑖 ∈ 𝒫 𝑇 ) |
21 |
20
|
elpwid |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝒫 𝑇 ∧ ( 𝑆 ≈ 𝑖 ∧ ( 𝑖 ∪ ∅ ) ∈ 𝐼 ) ) ) → 𝑖 ⊆ 𝑇 ) |
22 |
1
|
elfvexd |
⊢ ( 𝜑 → 𝑋 ∈ V ) |
23 |
22 6
|
ssexd |
⊢ ( 𝜑 → 𝑇 ∈ V ) |
24 |
|
ssdomg |
⊢ ( 𝑇 ∈ V → ( 𝑖 ⊆ 𝑇 → 𝑖 ≼ 𝑇 ) ) |
25 |
23 24
|
syl |
⊢ ( 𝜑 → ( 𝑖 ⊆ 𝑇 → 𝑖 ≼ 𝑇 ) ) |
26 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝒫 𝑇 ∧ ( 𝑆 ≈ 𝑖 ∧ ( 𝑖 ∪ ∅ ) ∈ 𝐼 ) ) ) → ( 𝑖 ⊆ 𝑇 → 𝑖 ≼ 𝑇 ) ) |
27 |
21 26
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝒫 𝑇 ∧ ( 𝑆 ≈ 𝑖 ∧ ( 𝑖 ∪ ∅ ) ∈ 𝐼 ) ) ) → 𝑖 ≼ 𝑇 ) |
28 |
|
endomtr |
⊢ ( ( 𝑆 ≈ 𝑖 ∧ 𝑖 ≼ 𝑇 ) → 𝑆 ≼ 𝑇 ) |
29 |
19 27 28
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝒫 𝑇 ∧ ( 𝑆 ≈ 𝑖 ∧ ( 𝑖 ∪ ∅ ) ∈ 𝐼 ) ) ) → 𝑆 ≼ 𝑇 ) |
30 |
18 29
|
rexlimddv |
⊢ ( 𝜑 → 𝑆 ≼ 𝑇 ) |