| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mreexexlem2d.1 | ⊢ ( 𝜑  →  𝐴  ∈  ( Moore ‘ 𝑋 ) ) | 
						
							| 2 |  | mreexexlem2d.2 | ⊢ 𝑁  =  ( mrCls ‘ 𝐴 ) | 
						
							| 3 |  | mreexexlem2d.3 | ⊢ 𝐼  =  ( mrInd ‘ 𝐴 ) | 
						
							| 4 |  | mreexexlem2d.4 | ⊢ ( 𝜑  →  ∀ 𝑠  ∈  𝒫  𝑋 ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  ( ( 𝑁 ‘ ( 𝑠  ∪  { 𝑦 } ) )  ∖  ( 𝑁 ‘ 𝑠 ) ) 𝑦  ∈  ( 𝑁 ‘ ( 𝑠  ∪  { 𝑧 } ) ) ) | 
						
							| 5 |  | mreexexlem2d.5 | ⊢ ( 𝜑  →  𝐹  ⊆  ( 𝑋  ∖  𝐻 ) ) | 
						
							| 6 |  | mreexexlem2d.6 | ⊢ ( 𝜑  →  𝐺  ⊆  ( 𝑋  ∖  𝐻 ) ) | 
						
							| 7 |  | mreexexlem2d.7 | ⊢ ( 𝜑  →  𝐹  ⊆  ( 𝑁 ‘ ( 𝐺  ∪  𝐻 ) ) ) | 
						
							| 8 |  | mreexexlem2d.8 | ⊢ ( 𝜑  →  ( 𝐹  ∪  𝐻 )  ∈  𝐼 ) | 
						
							| 9 |  | mreexexd.9 | ⊢ ( 𝜑  →  ( 𝐹  ∈  Fin  ∨  𝐺  ∈  Fin ) ) | 
						
							| 10 | 1 | elfvexd | ⊢ ( 𝜑  →  𝑋  ∈  V ) | 
						
							| 11 |  | exmid | ⊢ ( 𝐹  ∈  Fin  ∨  ¬  𝐹  ∈  Fin ) | 
						
							| 12 |  | ficardid | ⊢ ( 𝐹  ∈  Fin  →  ( card ‘ 𝐹 )  ≈  𝐹 ) | 
						
							| 13 | 12 | ensymd | ⊢ ( 𝐹  ∈  Fin  →  𝐹  ≈  ( card ‘ 𝐹 ) ) | 
						
							| 14 |  | iftrue | ⊢ ( 𝐹  ∈  Fin  →  if ( 𝐹  ∈  Fin ,  ( card ‘ 𝐹 ) ,  ( card ‘ 𝐺 ) )  =  ( card ‘ 𝐹 ) ) | 
						
							| 15 | 13 14 | breqtrrd | ⊢ ( 𝐹  ∈  Fin  →  𝐹  ≈  if ( 𝐹  ∈  Fin ,  ( card ‘ 𝐹 ) ,  ( card ‘ 𝐺 ) ) ) | 
						
							| 16 | 15 | a1i | ⊢ ( 𝜑  →  ( 𝐹  ∈  Fin  →  𝐹  ≈  if ( 𝐹  ∈  Fin ,  ( card ‘ 𝐹 ) ,  ( card ‘ 𝐺 ) ) ) ) | 
						
							| 17 | 9 | orcanai | ⊢ ( ( 𝜑  ∧  ¬  𝐹  ∈  Fin )  →  𝐺  ∈  Fin ) | 
						
							| 18 |  | ficardid | ⊢ ( 𝐺  ∈  Fin  →  ( card ‘ 𝐺 )  ≈  𝐺 ) | 
						
							| 19 | 18 | ensymd | ⊢ ( 𝐺  ∈  Fin  →  𝐺  ≈  ( card ‘ 𝐺 ) ) | 
						
							| 20 | 17 19 | syl | ⊢ ( ( 𝜑  ∧  ¬  𝐹  ∈  Fin )  →  𝐺  ≈  ( card ‘ 𝐺 ) ) | 
						
							| 21 |  | iffalse | ⊢ ( ¬  𝐹  ∈  Fin  →  if ( 𝐹  ∈  Fin ,  ( card ‘ 𝐹 ) ,  ( card ‘ 𝐺 ) )  =  ( card ‘ 𝐺 ) ) | 
						
							| 22 | 21 | adantl | ⊢ ( ( 𝜑  ∧  ¬  𝐹  ∈  Fin )  →  if ( 𝐹  ∈  Fin ,  ( card ‘ 𝐹 ) ,  ( card ‘ 𝐺 ) )  =  ( card ‘ 𝐺 ) ) | 
						
							| 23 | 20 22 | breqtrrd | ⊢ ( ( 𝜑  ∧  ¬  𝐹  ∈  Fin )  →  𝐺  ≈  if ( 𝐹  ∈  Fin ,  ( card ‘ 𝐹 ) ,  ( card ‘ 𝐺 ) ) ) | 
						
							| 24 | 23 | ex | ⊢ ( 𝜑  →  ( ¬  𝐹  ∈  Fin  →  𝐺  ≈  if ( 𝐹  ∈  Fin ,  ( card ‘ 𝐹 ) ,  ( card ‘ 𝐺 ) ) ) ) | 
						
							| 25 | 16 24 | orim12d | ⊢ ( 𝜑  →  ( ( 𝐹  ∈  Fin  ∨  ¬  𝐹  ∈  Fin )  →  ( 𝐹  ≈  if ( 𝐹  ∈  Fin ,  ( card ‘ 𝐹 ) ,  ( card ‘ 𝐺 ) )  ∨  𝐺  ≈  if ( 𝐹  ∈  Fin ,  ( card ‘ 𝐹 ) ,  ( card ‘ 𝐺 ) ) ) ) ) | 
						
							| 26 | 11 25 | mpi | ⊢ ( 𝜑  →  ( 𝐹  ≈  if ( 𝐹  ∈  Fin ,  ( card ‘ 𝐹 ) ,  ( card ‘ 𝐺 ) )  ∨  𝐺  ≈  if ( 𝐹  ∈  Fin ,  ( card ‘ 𝐹 ) ,  ( card ‘ 𝐺 ) ) ) ) | 
						
							| 27 |  | ficardom | ⊢ ( 𝐹  ∈  Fin  →  ( card ‘ 𝐹 )  ∈  ω ) | 
						
							| 28 | 27 | adantl | ⊢ ( ( 𝜑  ∧  𝐹  ∈  Fin )  →  ( card ‘ 𝐹 )  ∈  ω ) | 
						
							| 29 |  | ficardom | ⊢ ( 𝐺  ∈  Fin  →  ( card ‘ 𝐺 )  ∈  ω ) | 
						
							| 30 | 17 29 | syl | ⊢ ( ( 𝜑  ∧  ¬  𝐹  ∈  Fin )  →  ( card ‘ 𝐺 )  ∈  ω ) | 
						
							| 31 | 28 30 | ifclda | ⊢ ( 𝜑  →  if ( 𝐹  ∈  Fin ,  ( card ‘ 𝐹 ) ,  ( card ‘ 𝐺 ) )  ∈  ω ) | 
						
							| 32 |  | breq2 | ⊢ ( 𝑙  =  ∅  →  ( 𝑓  ≈  𝑙  ↔  𝑓  ≈  ∅ ) ) | 
						
							| 33 |  | breq2 | ⊢ ( 𝑙  =  ∅  →  ( 𝑔  ≈  𝑙  ↔  𝑔  ≈  ∅ ) ) | 
						
							| 34 | 32 33 | orbi12d | ⊢ ( 𝑙  =  ∅  →  ( ( 𝑓  ≈  𝑙  ∨  𝑔  ≈  𝑙 )  ↔  ( 𝑓  ≈  ∅  ∨  𝑔  ≈  ∅ ) ) ) | 
						
							| 35 | 34 | 3anbi1d | ⊢ ( 𝑙  =  ∅  →  ( ( ( 𝑓  ≈  𝑙  ∨  𝑔  ≈  𝑙 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  ↔  ( ( 𝑓  ≈  ∅  ∨  𝑔  ≈  ∅ )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 ) ) ) | 
						
							| 36 | 35 | imbi1d | ⊢ ( 𝑙  =  ∅  →  ( ( ( ( 𝑓  ≈  𝑙  ∨  𝑔  ≈  𝑙 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) )  ↔  ( ( ( 𝑓  ≈  ∅  ∨  𝑔  ≈  ∅ )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) ) ) ) | 
						
							| 37 | 36 | 2ralbidv | ⊢ ( 𝑙  =  ∅  →  ( ∀ 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ ) ∀ 𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ( ( ( 𝑓  ≈  𝑙  ∨  𝑔  ≈  𝑙 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) )  ↔  ∀ 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ ) ∀ 𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ( ( ( 𝑓  ≈  ∅  ∨  𝑔  ≈  ∅ )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) ) ) ) | 
						
							| 38 | 37 | albidv | ⊢ ( 𝑙  =  ∅  →  ( ∀ ℎ ∀ 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ ) ∀ 𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ( ( ( 𝑓  ≈  𝑙  ∨  𝑔  ≈  𝑙 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) )  ↔  ∀ ℎ ∀ 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ ) ∀ 𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ( ( ( 𝑓  ≈  ∅  ∨  𝑔  ≈  ∅ )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) ) ) ) | 
						
							| 39 | 38 | imbi2d | ⊢ ( 𝑙  =  ∅  →  ( ( 𝜑  →  ∀ ℎ ∀ 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ ) ∀ 𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ( ( ( 𝑓  ≈  𝑙  ∨  𝑔  ≈  𝑙 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) ) )  ↔  ( 𝜑  →  ∀ ℎ ∀ 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ ) ∀ 𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ( ( ( 𝑓  ≈  ∅  ∨  𝑔  ≈  ∅ )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) ) ) ) ) | 
						
							| 40 |  | breq2 | ⊢ ( 𝑙  =  𝑘  →  ( 𝑓  ≈  𝑙  ↔  𝑓  ≈  𝑘 ) ) | 
						
							| 41 |  | breq2 | ⊢ ( 𝑙  =  𝑘  →  ( 𝑔  ≈  𝑙  ↔  𝑔  ≈  𝑘 ) ) | 
						
							| 42 | 40 41 | orbi12d | ⊢ ( 𝑙  =  𝑘  →  ( ( 𝑓  ≈  𝑙  ∨  𝑔  ≈  𝑙 )  ↔  ( 𝑓  ≈  𝑘  ∨  𝑔  ≈  𝑘 ) ) ) | 
						
							| 43 | 42 | 3anbi1d | ⊢ ( 𝑙  =  𝑘  →  ( ( ( 𝑓  ≈  𝑙  ∨  𝑔  ≈  𝑙 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  ↔  ( ( 𝑓  ≈  𝑘  ∨  𝑔  ≈  𝑘 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 ) ) ) | 
						
							| 44 | 43 | imbi1d | ⊢ ( 𝑙  =  𝑘  →  ( ( ( ( 𝑓  ≈  𝑙  ∨  𝑔  ≈  𝑙 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) )  ↔  ( ( ( 𝑓  ≈  𝑘  ∨  𝑔  ≈  𝑘 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) ) ) ) | 
						
							| 45 | 44 | 2ralbidv | ⊢ ( 𝑙  =  𝑘  →  ( ∀ 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ ) ∀ 𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ( ( ( 𝑓  ≈  𝑙  ∨  𝑔  ≈  𝑙 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) )  ↔  ∀ 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ ) ∀ 𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ( ( ( 𝑓  ≈  𝑘  ∨  𝑔  ≈  𝑘 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) ) ) ) | 
						
							| 46 | 45 | albidv | ⊢ ( 𝑙  =  𝑘  →  ( ∀ ℎ ∀ 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ ) ∀ 𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ( ( ( 𝑓  ≈  𝑙  ∨  𝑔  ≈  𝑙 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) )  ↔  ∀ ℎ ∀ 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ ) ∀ 𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ( ( ( 𝑓  ≈  𝑘  ∨  𝑔  ≈  𝑘 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) ) ) ) | 
						
							| 47 | 46 | imbi2d | ⊢ ( 𝑙  =  𝑘  →  ( ( 𝜑  →  ∀ ℎ ∀ 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ ) ∀ 𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ( ( ( 𝑓  ≈  𝑙  ∨  𝑔  ≈  𝑙 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) ) )  ↔  ( 𝜑  →  ∀ ℎ ∀ 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ ) ∀ 𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ( ( ( 𝑓  ≈  𝑘  ∨  𝑔  ≈  𝑘 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) ) ) ) ) | 
						
							| 48 |  | breq2 | ⊢ ( 𝑙  =  suc  𝑘  →  ( 𝑓  ≈  𝑙  ↔  𝑓  ≈  suc  𝑘 ) ) | 
						
							| 49 |  | breq2 | ⊢ ( 𝑙  =  suc  𝑘  →  ( 𝑔  ≈  𝑙  ↔  𝑔  ≈  suc  𝑘 ) ) | 
						
							| 50 | 48 49 | orbi12d | ⊢ ( 𝑙  =  suc  𝑘  →  ( ( 𝑓  ≈  𝑙  ∨  𝑔  ≈  𝑙 )  ↔  ( 𝑓  ≈  suc  𝑘  ∨  𝑔  ≈  suc  𝑘 ) ) ) | 
						
							| 51 | 50 | 3anbi1d | ⊢ ( 𝑙  =  suc  𝑘  →  ( ( ( 𝑓  ≈  𝑙  ∨  𝑔  ≈  𝑙 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  ↔  ( ( 𝑓  ≈  suc  𝑘  ∨  𝑔  ≈  suc  𝑘 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 ) ) ) | 
						
							| 52 | 51 | imbi1d | ⊢ ( 𝑙  =  suc  𝑘  →  ( ( ( ( 𝑓  ≈  𝑙  ∨  𝑔  ≈  𝑙 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) )  ↔  ( ( ( 𝑓  ≈  suc  𝑘  ∨  𝑔  ≈  suc  𝑘 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) ) ) ) | 
						
							| 53 | 52 | 2ralbidv | ⊢ ( 𝑙  =  suc  𝑘  →  ( ∀ 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ ) ∀ 𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ( ( ( 𝑓  ≈  𝑙  ∨  𝑔  ≈  𝑙 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) )  ↔  ∀ 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ ) ∀ 𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ( ( ( 𝑓  ≈  suc  𝑘  ∨  𝑔  ≈  suc  𝑘 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) ) ) ) | 
						
							| 54 | 53 | albidv | ⊢ ( 𝑙  =  suc  𝑘  →  ( ∀ ℎ ∀ 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ ) ∀ 𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ( ( ( 𝑓  ≈  𝑙  ∨  𝑔  ≈  𝑙 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) )  ↔  ∀ ℎ ∀ 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ ) ∀ 𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ( ( ( 𝑓  ≈  suc  𝑘  ∨  𝑔  ≈  suc  𝑘 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) ) ) ) | 
						
							| 55 | 54 | imbi2d | ⊢ ( 𝑙  =  suc  𝑘  →  ( ( 𝜑  →  ∀ ℎ ∀ 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ ) ∀ 𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ( ( ( 𝑓  ≈  𝑙  ∨  𝑔  ≈  𝑙 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) ) )  ↔  ( 𝜑  →  ∀ ℎ ∀ 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ ) ∀ 𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ( ( ( 𝑓  ≈  suc  𝑘  ∨  𝑔  ≈  suc  𝑘 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) ) ) ) ) | 
						
							| 56 |  | breq2 | ⊢ ( 𝑙  =  if ( 𝐹  ∈  Fin ,  ( card ‘ 𝐹 ) ,  ( card ‘ 𝐺 ) )  →  ( 𝑓  ≈  𝑙  ↔  𝑓  ≈  if ( 𝐹  ∈  Fin ,  ( card ‘ 𝐹 ) ,  ( card ‘ 𝐺 ) ) ) ) | 
						
							| 57 |  | breq2 | ⊢ ( 𝑙  =  if ( 𝐹  ∈  Fin ,  ( card ‘ 𝐹 ) ,  ( card ‘ 𝐺 ) )  →  ( 𝑔  ≈  𝑙  ↔  𝑔  ≈  if ( 𝐹  ∈  Fin ,  ( card ‘ 𝐹 ) ,  ( card ‘ 𝐺 ) ) ) ) | 
						
							| 58 | 56 57 | orbi12d | ⊢ ( 𝑙  =  if ( 𝐹  ∈  Fin ,  ( card ‘ 𝐹 ) ,  ( card ‘ 𝐺 ) )  →  ( ( 𝑓  ≈  𝑙  ∨  𝑔  ≈  𝑙 )  ↔  ( 𝑓  ≈  if ( 𝐹  ∈  Fin ,  ( card ‘ 𝐹 ) ,  ( card ‘ 𝐺 ) )  ∨  𝑔  ≈  if ( 𝐹  ∈  Fin ,  ( card ‘ 𝐹 ) ,  ( card ‘ 𝐺 ) ) ) ) ) | 
						
							| 59 | 58 | 3anbi1d | ⊢ ( 𝑙  =  if ( 𝐹  ∈  Fin ,  ( card ‘ 𝐹 ) ,  ( card ‘ 𝐺 ) )  →  ( ( ( 𝑓  ≈  𝑙  ∨  𝑔  ≈  𝑙 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  ↔  ( ( 𝑓  ≈  if ( 𝐹  ∈  Fin ,  ( card ‘ 𝐹 ) ,  ( card ‘ 𝐺 ) )  ∨  𝑔  ≈  if ( 𝐹  ∈  Fin ,  ( card ‘ 𝐹 ) ,  ( card ‘ 𝐺 ) ) )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 ) ) ) | 
						
							| 60 | 59 | imbi1d | ⊢ ( 𝑙  =  if ( 𝐹  ∈  Fin ,  ( card ‘ 𝐹 ) ,  ( card ‘ 𝐺 ) )  →  ( ( ( ( 𝑓  ≈  𝑙  ∨  𝑔  ≈  𝑙 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) )  ↔  ( ( ( 𝑓  ≈  if ( 𝐹  ∈  Fin ,  ( card ‘ 𝐹 ) ,  ( card ‘ 𝐺 ) )  ∨  𝑔  ≈  if ( 𝐹  ∈  Fin ,  ( card ‘ 𝐹 ) ,  ( card ‘ 𝐺 ) ) )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) ) ) ) | 
						
							| 61 | 60 | 2ralbidv | ⊢ ( 𝑙  =  if ( 𝐹  ∈  Fin ,  ( card ‘ 𝐹 ) ,  ( card ‘ 𝐺 ) )  →  ( ∀ 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ ) ∀ 𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ( ( ( 𝑓  ≈  𝑙  ∨  𝑔  ≈  𝑙 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) )  ↔  ∀ 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ ) ∀ 𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ( ( ( 𝑓  ≈  if ( 𝐹  ∈  Fin ,  ( card ‘ 𝐹 ) ,  ( card ‘ 𝐺 ) )  ∨  𝑔  ≈  if ( 𝐹  ∈  Fin ,  ( card ‘ 𝐹 ) ,  ( card ‘ 𝐺 ) ) )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) ) ) ) | 
						
							| 62 | 61 | albidv | ⊢ ( 𝑙  =  if ( 𝐹  ∈  Fin ,  ( card ‘ 𝐹 ) ,  ( card ‘ 𝐺 ) )  →  ( ∀ ℎ ∀ 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ ) ∀ 𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ( ( ( 𝑓  ≈  𝑙  ∨  𝑔  ≈  𝑙 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) )  ↔  ∀ ℎ ∀ 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ ) ∀ 𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ( ( ( 𝑓  ≈  if ( 𝐹  ∈  Fin ,  ( card ‘ 𝐹 ) ,  ( card ‘ 𝐺 ) )  ∨  𝑔  ≈  if ( 𝐹  ∈  Fin ,  ( card ‘ 𝐹 ) ,  ( card ‘ 𝐺 ) ) )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) ) ) ) | 
						
							| 63 | 62 | imbi2d | ⊢ ( 𝑙  =  if ( 𝐹  ∈  Fin ,  ( card ‘ 𝐹 ) ,  ( card ‘ 𝐺 ) )  →  ( ( 𝜑  →  ∀ ℎ ∀ 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ ) ∀ 𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ( ( ( 𝑓  ≈  𝑙  ∨  𝑔  ≈  𝑙 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) ) )  ↔  ( 𝜑  →  ∀ ℎ ∀ 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ ) ∀ 𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ( ( ( 𝑓  ≈  if ( 𝐹  ∈  Fin ,  ( card ‘ 𝐹 ) ,  ( card ‘ 𝐺 ) )  ∨  𝑔  ≈  if ( 𝐹  ∈  Fin ,  ( card ‘ 𝐹 ) ,  ( card ‘ 𝐺 ) ) )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) ) ) ) ) | 
						
							| 64 | 1 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ )  ∧  𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ) )  ∧  ( ( 𝑓  ≈  ∅  ∨  𝑔  ≈  ∅ )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 ) )  →  𝐴  ∈  ( Moore ‘ 𝑋 ) ) | 
						
							| 65 | 4 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ )  ∧  𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ) )  ∧  ( ( 𝑓  ≈  ∅  ∨  𝑔  ≈  ∅ )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 ) )  →  ∀ 𝑠  ∈  𝒫  𝑋 ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  ( ( 𝑁 ‘ ( 𝑠  ∪  { 𝑦 } ) )  ∖  ( 𝑁 ‘ 𝑠 ) ) 𝑦  ∈  ( 𝑁 ‘ ( 𝑠  ∪  { 𝑧 } ) ) ) | 
						
							| 66 |  | simplrl | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ )  ∧  𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ) )  ∧  ( ( 𝑓  ≈  ∅  ∨  𝑔  ≈  ∅ )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 ) )  →  𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ ) ) | 
						
							| 67 | 66 | elpwid | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ )  ∧  𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ) )  ∧  ( ( 𝑓  ≈  ∅  ∨  𝑔  ≈  ∅ )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 ) )  →  𝑓  ⊆  ( 𝑋  ∖  ℎ ) ) | 
						
							| 68 |  | simplrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ )  ∧  𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ) )  ∧  ( ( 𝑓  ≈  ∅  ∨  𝑔  ≈  ∅ )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 ) )  →  𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ) | 
						
							| 69 | 68 | elpwid | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ )  ∧  𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ) )  ∧  ( ( 𝑓  ≈  ∅  ∨  𝑔  ≈  ∅ )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 ) )  →  𝑔  ⊆  ( 𝑋  ∖  ℎ ) ) | 
						
							| 70 |  | simpr2 | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ )  ∧  𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ) )  ∧  ( ( 𝑓  ≈  ∅  ∨  𝑔  ≈  ∅ )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 ) )  →  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) ) ) | 
						
							| 71 |  | simpr3 | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ )  ∧  𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ) )  ∧  ( ( 𝑓  ≈  ∅  ∨  𝑔  ≈  ∅ )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 ) )  →  ( 𝑓  ∪  ℎ )  ∈  𝐼 ) | 
						
							| 72 |  | simpr1 | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ )  ∧  𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ) )  ∧  ( ( 𝑓  ≈  ∅  ∨  𝑔  ≈  ∅ )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 ) )  →  ( 𝑓  ≈  ∅  ∨  𝑔  ≈  ∅ ) ) | 
						
							| 73 |  | en0 | ⊢ ( 𝑓  ≈  ∅  ↔  𝑓  =  ∅ ) | 
						
							| 74 |  | en0 | ⊢ ( 𝑔  ≈  ∅  ↔  𝑔  =  ∅ ) | 
						
							| 75 | 73 74 | orbi12i | ⊢ ( ( 𝑓  ≈  ∅  ∨  𝑔  ≈  ∅ )  ↔  ( 𝑓  =  ∅  ∨  𝑔  =  ∅ ) ) | 
						
							| 76 | 72 75 | sylib | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ )  ∧  𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ) )  ∧  ( ( 𝑓  ≈  ∅  ∨  𝑔  ≈  ∅ )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 ) )  →  ( 𝑓  =  ∅  ∨  𝑔  =  ∅ ) ) | 
						
							| 77 | 64 2 3 65 67 69 70 71 76 | mreexexlem3d | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ )  ∧  𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ) )  ∧  ( ( 𝑓  ≈  ∅  ∨  𝑔  ≈  ∅ )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 ) )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) ) | 
						
							| 78 | 77 | ex | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ )  ∧  𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ) )  →  ( ( ( 𝑓  ≈  ∅  ∨  𝑔  ≈  ∅ )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) ) ) | 
						
							| 79 | 78 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ ) ∀ 𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ( ( ( 𝑓  ≈  ∅  ∨  𝑔  ≈  ∅ )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) ) ) | 
						
							| 80 | 79 | alrimiv | ⊢ ( 𝜑  →  ∀ ℎ ∀ 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ ) ∀ 𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ( ( ( 𝑓  ≈  ∅  ∨  𝑔  ≈  ∅ )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) ) ) | 
						
							| 81 |  | nfv | ⊢ Ⅎ ℎ 𝜑 | 
						
							| 82 |  | nfv | ⊢ Ⅎ ℎ 𝑘  ∈  ω | 
						
							| 83 |  | nfa1 | ⊢ Ⅎ ℎ ∀ ℎ ∀ 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ ) ∀ 𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ( ( ( 𝑓  ≈  𝑘  ∨  𝑔  ≈  𝑘 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) ) | 
						
							| 84 | 81 82 83 | nf3an | ⊢ Ⅎ ℎ ( 𝜑  ∧  𝑘  ∈  ω  ∧  ∀ ℎ ∀ 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ ) ∀ 𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ( ( ( 𝑓  ≈  𝑘  ∨  𝑔  ≈  𝑘 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) ) ) | 
						
							| 85 |  | nfv | ⊢ Ⅎ 𝑓 𝜑 | 
						
							| 86 |  | nfv | ⊢ Ⅎ 𝑓 𝑘  ∈  ω | 
						
							| 87 |  | nfra1 | ⊢ Ⅎ 𝑓 ∀ 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ ) ∀ 𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ( ( ( 𝑓  ≈  𝑘  ∨  𝑔  ≈  𝑘 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) ) | 
						
							| 88 | 87 | nfal | ⊢ Ⅎ 𝑓 ∀ ℎ ∀ 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ ) ∀ 𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ( ( ( 𝑓  ≈  𝑘  ∨  𝑔  ≈  𝑘 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) ) | 
						
							| 89 | 85 86 88 | nf3an | ⊢ Ⅎ 𝑓 ( 𝜑  ∧  𝑘  ∈  ω  ∧  ∀ ℎ ∀ 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ ) ∀ 𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ( ( ( 𝑓  ≈  𝑘  ∨  𝑔  ≈  𝑘 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) ) ) | 
						
							| 90 |  | nfv | ⊢ Ⅎ 𝑔 𝜑 | 
						
							| 91 |  | nfv | ⊢ Ⅎ 𝑔 𝑘  ∈  ω | 
						
							| 92 |  | nfra2w | ⊢ Ⅎ 𝑔 ∀ 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ ) ∀ 𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ( ( ( 𝑓  ≈  𝑘  ∨  𝑔  ≈  𝑘 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) ) | 
						
							| 93 | 92 | nfal | ⊢ Ⅎ 𝑔 ∀ ℎ ∀ 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ ) ∀ 𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ( ( ( 𝑓  ≈  𝑘  ∨  𝑔  ≈  𝑘 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) ) | 
						
							| 94 | 90 91 93 | nf3an | ⊢ Ⅎ 𝑔 ( 𝜑  ∧  𝑘  ∈  ω  ∧  ∀ ℎ ∀ 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ ) ∀ 𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ( ( ( 𝑓  ≈  𝑘  ∨  𝑔  ≈  𝑘 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) ) ) | 
						
							| 95 |  | nfv | ⊢ Ⅎ 𝑔 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ ) | 
						
							| 96 | 94 95 | nfan | ⊢ Ⅎ 𝑔 ( ( 𝜑  ∧  𝑘  ∈  ω  ∧  ∀ ℎ ∀ 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ ) ∀ 𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ( ( ( 𝑓  ≈  𝑘  ∨  𝑔  ≈  𝑘 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) ) )  ∧  𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ ) ) | 
						
							| 97 | 1 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ω  ∧  ∀ ℎ ∀ 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ ) ∀ 𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ( ( ( 𝑓  ≈  𝑘  ∨  𝑔  ≈  𝑘 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) ) )  →  𝐴  ∈  ( Moore ‘ 𝑋 ) ) | 
						
							| 98 | 97 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ω  ∧  ∀ ℎ ∀ 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ ) ∀ 𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ( ( ( 𝑓  ≈  𝑘  ∨  𝑔  ≈  𝑘 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) ) )  ∧  ( 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ )  ∧  𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ) )  ∧  ( ( 𝑓  ≈  suc  𝑘  ∨  𝑔  ≈  suc  𝑘 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 ) )  →  𝐴  ∈  ( Moore ‘ 𝑋 ) ) | 
						
							| 99 | 4 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ω  ∧  ∀ ℎ ∀ 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ ) ∀ 𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ( ( ( 𝑓  ≈  𝑘  ∨  𝑔  ≈  𝑘 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) ) )  →  ∀ 𝑠  ∈  𝒫  𝑋 ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  ( ( 𝑁 ‘ ( 𝑠  ∪  { 𝑦 } ) )  ∖  ( 𝑁 ‘ 𝑠 ) ) 𝑦  ∈  ( 𝑁 ‘ ( 𝑠  ∪  { 𝑧 } ) ) ) | 
						
							| 100 | 99 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ω  ∧  ∀ ℎ ∀ 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ ) ∀ 𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ( ( ( 𝑓  ≈  𝑘  ∨  𝑔  ≈  𝑘 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) ) )  ∧  ( 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ )  ∧  𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ) )  ∧  ( ( 𝑓  ≈  suc  𝑘  ∨  𝑔  ≈  suc  𝑘 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 ) )  →  ∀ 𝑠  ∈  𝒫  𝑋 ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  ( ( 𝑁 ‘ ( 𝑠  ∪  { 𝑦 } ) )  ∖  ( 𝑁 ‘ 𝑠 ) ) 𝑦  ∈  ( 𝑁 ‘ ( 𝑠  ∪  { 𝑧 } ) ) ) | 
						
							| 101 |  | simplrl | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ω  ∧  ∀ ℎ ∀ 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ ) ∀ 𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ( ( ( 𝑓  ≈  𝑘  ∨  𝑔  ≈  𝑘 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) ) )  ∧  ( 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ )  ∧  𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ) )  ∧  ( ( 𝑓  ≈  suc  𝑘  ∨  𝑔  ≈  suc  𝑘 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 ) )  →  𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ ) ) | 
						
							| 102 | 101 | elpwid | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ω  ∧  ∀ ℎ ∀ 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ ) ∀ 𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ( ( ( 𝑓  ≈  𝑘  ∨  𝑔  ≈  𝑘 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) ) )  ∧  ( 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ )  ∧  𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ) )  ∧  ( ( 𝑓  ≈  suc  𝑘  ∨  𝑔  ≈  suc  𝑘 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 ) )  →  𝑓  ⊆  ( 𝑋  ∖  ℎ ) ) | 
						
							| 103 |  | simplrr | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ω  ∧  ∀ ℎ ∀ 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ ) ∀ 𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ( ( ( 𝑓  ≈  𝑘  ∨  𝑔  ≈  𝑘 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) ) )  ∧  ( 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ )  ∧  𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ) )  ∧  ( ( 𝑓  ≈  suc  𝑘  ∨  𝑔  ≈  suc  𝑘 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 ) )  →  𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ) | 
						
							| 104 | 103 | elpwid | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ω  ∧  ∀ ℎ ∀ 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ ) ∀ 𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ( ( ( 𝑓  ≈  𝑘  ∨  𝑔  ≈  𝑘 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) ) )  ∧  ( 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ )  ∧  𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ) )  ∧  ( ( 𝑓  ≈  suc  𝑘  ∨  𝑔  ≈  suc  𝑘 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 ) )  →  𝑔  ⊆  ( 𝑋  ∖  ℎ ) ) | 
						
							| 105 |  | simpr2 | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ω  ∧  ∀ ℎ ∀ 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ ) ∀ 𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ( ( ( 𝑓  ≈  𝑘  ∨  𝑔  ≈  𝑘 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) ) )  ∧  ( 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ )  ∧  𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ) )  ∧  ( ( 𝑓  ≈  suc  𝑘  ∨  𝑔  ≈  suc  𝑘 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 ) )  →  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) ) ) | 
						
							| 106 |  | simpr3 | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ω  ∧  ∀ ℎ ∀ 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ ) ∀ 𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ( ( ( 𝑓  ≈  𝑘  ∨  𝑔  ≈  𝑘 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) ) )  ∧  ( 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ )  ∧  𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ) )  ∧  ( ( 𝑓  ≈  suc  𝑘  ∨  𝑔  ≈  suc  𝑘 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 ) )  →  ( 𝑓  ∪  ℎ )  ∈  𝐼 ) | 
						
							| 107 |  | simpll2 | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ω  ∧  ∀ ℎ ∀ 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ ) ∀ 𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ( ( ( 𝑓  ≈  𝑘  ∨  𝑔  ≈  𝑘 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) ) )  ∧  ( 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ )  ∧  𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ) )  ∧  ( ( 𝑓  ≈  suc  𝑘  ∨  𝑔  ≈  suc  𝑘 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 ) )  →  𝑘  ∈  ω ) | 
						
							| 108 |  | simpll3 | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ω  ∧  ∀ ℎ ∀ 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ ) ∀ 𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ( ( ( 𝑓  ≈  𝑘  ∨  𝑔  ≈  𝑘 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) ) )  ∧  ( 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ )  ∧  𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ) )  ∧  ( ( 𝑓  ≈  suc  𝑘  ∨  𝑔  ≈  suc  𝑘 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 ) )  →  ∀ ℎ ∀ 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ ) ∀ 𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ( ( ( 𝑓  ≈  𝑘  ∨  𝑔  ≈  𝑘 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) ) ) | 
						
							| 109 |  | simpr1 | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ω  ∧  ∀ ℎ ∀ 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ ) ∀ 𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ( ( ( 𝑓  ≈  𝑘  ∨  𝑔  ≈  𝑘 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) ) )  ∧  ( 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ )  ∧  𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ) )  ∧  ( ( 𝑓  ≈  suc  𝑘  ∨  𝑔  ≈  suc  𝑘 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 ) )  →  ( 𝑓  ≈  suc  𝑘  ∨  𝑔  ≈  suc  𝑘 ) ) | 
						
							| 110 | 98 2 3 100 102 104 105 106 107 108 109 | mreexexlem4d | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ω  ∧  ∀ ℎ ∀ 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ ) ∀ 𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ( ( ( 𝑓  ≈  𝑘  ∨  𝑔  ≈  𝑘 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) ) )  ∧  ( 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ )  ∧  𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ) )  ∧  ( ( 𝑓  ≈  suc  𝑘  ∨  𝑔  ≈  suc  𝑘 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 ) )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) ) | 
						
							| 111 | 110 | ex | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ω  ∧  ∀ ℎ ∀ 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ ) ∀ 𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ( ( ( 𝑓  ≈  𝑘  ∨  𝑔  ≈  𝑘 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) ) )  ∧  ( 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ )  ∧  𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ) )  →  ( ( ( 𝑓  ≈  suc  𝑘  ∨  𝑔  ≈  suc  𝑘 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) ) ) | 
						
							| 112 | 111 | expr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ω  ∧  ∀ ℎ ∀ 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ ) ∀ 𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ( ( ( 𝑓  ≈  𝑘  ∨  𝑔  ≈  𝑘 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) ) )  ∧  𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ ) )  →  ( 𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ )  →  ( ( ( 𝑓  ≈  suc  𝑘  ∨  𝑔  ≈  suc  𝑘 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) ) ) ) | 
						
							| 113 | 96 112 | ralrimi | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ω  ∧  ∀ ℎ ∀ 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ ) ∀ 𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ( ( ( 𝑓  ≈  𝑘  ∨  𝑔  ≈  𝑘 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) ) )  ∧  𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ ) )  →  ∀ 𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ( ( ( 𝑓  ≈  suc  𝑘  ∨  𝑔  ≈  suc  𝑘 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) ) ) | 
						
							| 114 | 113 | ex | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ω  ∧  ∀ ℎ ∀ 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ ) ∀ 𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ( ( ( 𝑓  ≈  𝑘  ∨  𝑔  ≈  𝑘 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) ) )  →  ( 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ )  →  ∀ 𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ( ( ( 𝑓  ≈  suc  𝑘  ∨  𝑔  ≈  suc  𝑘 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) ) ) ) | 
						
							| 115 | 89 114 | ralrimi | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ω  ∧  ∀ ℎ ∀ 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ ) ∀ 𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ( ( ( 𝑓  ≈  𝑘  ∨  𝑔  ≈  𝑘 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) ) )  →  ∀ 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ ) ∀ 𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ( ( ( 𝑓  ≈  suc  𝑘  ∨  𝑔  ≈  suc  𝑘 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) ) ) | 
						
							| 116 | 84 115 | alrimi | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ω  ∧  ∀ ℎ ∀ 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ ) ∀ 𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ( ( ( 𝑓  ≈  𝑘  ∨  𝑔  ≈  𝑘 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) ) )  →  ∀ ℎ ∀ 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ ) ∀ 𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ( ( ( 𝑓  ≈  suc  𝑘  ∨  𝑔  ≈  suc  𝑘 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) ) ) | 
						
							| 117 | 116 | 3exp | ⊢ ( 𝜑  →  ( 𝑘  ∈  ω  →  ( ∀ ℎ ∀ 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ ) ∀ 𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ( ( ( 𝑓  ≈  𝑘  ∨  𝑔  ≈  𝑘 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) )  →  ∀ ℎ ∀ 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ ) ∀ 𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ( ( ( 𝑓  ≈  suc  𝑘  ∨  𝑔  ≈  suc  𝑘 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) ) ) ) ) | 
						
							| 118 | 117 | com12 | ⊢ ( 𝑘  ∈  ω  →  ( 𝜑  →  ( ∀ ℎ ∀ 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ ) ∀ 𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ( ( ( 𝑓  ≈  𝑘  ∨  𝑔  ≈  𝑘 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) )  →  ∀ ℎ ∀ 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ ) ∀ 𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ( ( ( 𝑓  ≈  suc  𝑘  ∨  𝑔  ≈  suc  𝑘 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) ) ) ) ) | 
						
							| 119 | 118 | a2d | ⊢ ( 𝑘  ∈  ω  →  ( ( 𝜑  →  ∀ ℎ ∀ 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ ) ∀ 𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ( ( ( 𝑓  ≈  𝑘  ∨  𝑔  ≈  𝑘 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) ) )  →  ( 𝜑  →  ∀ ℎ ∀ 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ ) ∀ 𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ( ( ( 𝑓  ≈  suc  𝑘  ∨  𝑔  ≈  suc  𝑘 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) ) ) ) ) | 
						
							| 120 | 39 47 55 63 80 119 | finds | ⊢ ( if ( 𝐹  ∈  Fin ,  ( card ‘ 𝐹 ) ,  ( card ‘ 𝐺 ) )  ∈  ω  →  ( 𝜑  →  ∀ ℎ ∀ 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ ) ∀ 𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ( ( ( 𝑓  ≈  if ( 𝐹  ∈  Fin ,  ( card ‘ 𝐹 ) ,  ( card ‘ 𝐺 ) )  ∨  𝑔  ≈  if ( 𝐹  ∈  Fin ,  ( card ‘ 𝐹 ) ,  ( card ‘ 𝐺 ) ) )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) ) ) ) | 
						
							| 121 | 31 120 | mpcom | ⊢ ( 𝜑  →  ∀ ℎ ∀ 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ ) ∀ 𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ( ( ( 𝑓  ≈  if ( 𝐹  ∈  Fin ,  ( card ‘ 𝐹 ) ,  ( card ‘ 𝐺 ) )  ∨  𝑔  ≈  if ( 𝐹  ∈  Fin ,  ( card ‘ 𝐹 ) ,  ( card ‘ 𝐺 ) ) )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑖  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑖  ∧  ( 𝑖  ∪  ℎ )  ∈  𝐼 ) ) ) | 
						
							| 122 | 10 5 6 7 8 26 121 | mreexexlemd | ⊢ ( 𝜑  →  ∃ 𝑞  ∈  𝒫  𝐺 ( 𝐹  ≈  𝑞  ∧  ( 𝑞  ∪  𝐻 )  ∈  𝐼 ) ) |