Step |
Hyp |
Ref |
Expression |
1 |
|
mreexexlem2d.1 |
⊢ ( 𝜑 → 𝐴 ∈ ( Moore ‘ 𝑋 ) ) |
2 |
|
mreexexlem2d.2 |
⊢ 𝑁 = ( mrCls ‘ 𝐴 ) |
3 |
|
mreexexlem2d.3 |
⊢ 𝐼 = ( mrInd ‘ 𝐴 ) |
4 |
|
mreexexlem2d.4 |
⊢ ( 𝜑 → ∀ 𝑠 ∈ 𝒫 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ ( ( 𝑁 ‘ ( 𝑠 ∪ { 𝑦 } ) ) ∖ ( 𝑁 ‘ 𝑠 ) ) 𝑦 ∈ ( 𝑁 ‘ ( 𝑠 ∪ { 𝑧 } ) ) ) |
5 |
|
mreexexlem2d.5 |
⊢ ( 𝜑 → 𝐹 ⊆ ( 𝑋 ∖ 𝐻 ) ) |
6 |
|
mreexexlem2d.6 |
⊢ ( 𝜑 → 𝐺 ⊆ ( 𝑋 ∖ 𝐻 ) ) |
7 |
|
mreexexlem2d.7 |
⊢ ( 𝜑 → 𝐹 ⊆ ( 𝑁 ‘ ( 𝐺 ∪ 𝐻 ) ) ) |
8 |
|
mreexexlem2d.8 |
⊢ ( 𝜑 → ( 𝐹 ∪ 𝐻 ) ∈ 𝐼 ) |
9 |
|
mreexexd.9 |
⊢ ( 𝜑 → ( 𝐹 ∈ Fin ∨ 𝐺 ∈ Fin ) ) |
10 |
1
|
elfvexd |
⊢ ( 𝜑 → 𝑋 ∈ V ) |
11 |
|
exmid |
⊢ ( 𝐹 ∈ Fin ∨ ¬ 𝐹 ∈ Fin ) |
12 |
|
ficardid |
⊢ ( 𝐹 ∈ Fin → ( card ‘ 𝐹 ) ≈ 𝐹 ) |
13 |
12
|
ensymd |
⊢ ( 𝐹 ∈ Fin → 𝐹 ≈ ( card ‘ 𝐹 ) ) |
14 |
|
iftrue |
⊢ ( 𝐹 ∈ Fin → if ( 𝐹 ∈ Fin , ( card ‘ 𝐹 ) , ( card ‘ 𝐺 ) ) = ( card ‘ 𝐹 ) ) |
15 |
13 14
|
breqtrrd |
⊢ ( 𝐹 ∈ Fin → 𝐹 ≈ if ( 𝐹 ∈ Fin , ( card ‘ 𝐹 ) , ( card ‘ 𝐺 ) ) ) |
16 |
15
|
a1i |
⊢ ( 𝜑 → ( 𝐹 ∈ Fin → 𝐹 ≈ if ( 𝐹 ∈ Fin , ( card ‘ 𝐹 ) , ( card ‘ 𝐺 ) ) ) ) |
17 |
9
|
orcanai |
⊢ ( ( 𝜑 ∧ ¬ 𝐹 ∈ Fin ) → 𝐺 ∈ Fin ) |
18 |
|
ficardid |
⊢ ( 𝐺 ∈ Fin → ( card ‘ 𝐺 ) ≈ 𝐺 ) |
19 |
18
|
ensymd |
⊢ ( 𝐺 ∈ Fin → 𝐺 ≈ ( card ‘ 𝐺 ) ) |
20 |
17 19
|
syl |
⊢ ( ( 𝜑 ∧ ¬ 𝐹 ∈ Fin ) → 𝐺 ≈ ( card ‘ 𝐺 ) ) |
21 |
|
iffalse |
⊢ ( ¬ 𝐹 ∈ Fin → if ( 𝐹 ∈ Fin , ( card ‘ 𝐹 ) , ( card ‘ 𝐺 ) ) = ( card ‘ 𝐺 ) ) |
22 |
21
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 𝐹 ∈ Fin ) → if ( 𝐹 ∈ Fin , ( card ‘ 𝐹 ) , ( card ‘ 𝐺 ) ) = ( card ‘ 𝐺 ) ) |
23 |
20 22
|
breqtrrd |
⊢ ( ( 𝜑 ∧ ¬ 𝐹 ∈ Fin ) → 𝐺 ≈ if ( 𝐹 ∈ Fin , ( card ‘ 𝐹 ) , ( card ‘ 𝐺 ) ) ) |
24 |
23
|
ex |
⊢ ( 𝜑 → ( ¬ 𝐹 ∈ Fin → 𝐺 ≈ if ( 𝐹 ∈ Fin , ( card ‘ 𝐹 ) , ( card ‘ 𝐺 ) ) ) ) |
25 |
16 24
|
orim12d |
⊢ ( 𝜑 → ( ( 𝐹 ∈ Fin ∨ ¬ 𝐹 ∈ Fin ) → ( 𝐹 ≈ if ( 𝐹 ∈ Fin , ( card ‘ 𝐹 ) , ( card ‘ 𝐺 ) ) ∨ 𝐺 ≈ if ( 𝐹 ∈ Fin , ( card ‘ 𝐹 ) , ( card ‘ 𝐺 ) ) ) ) ) |
26 |
11 25
|
mpi |
⊢ ( 𝜑 → ( 𝐹 ≈ if ( 𝐹 ∈ Fin , ( card ‘ 𝐹 ) , ( card ‘ 𝐺 ) ) ∨ 𝐺 ≈ if ( 𝐹 ∈ Fin , ( card ‘ 𝐹 ) , ( card ‘ 𝐺 ) ) ) ) |
27 |
|
ficardom |
⊢ ( 𝐹 ∈ Fin → ( card ‘ 𝐹 ) ∈ ω ) |
28 |
27
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ Fin ) → ( card ‘ 𝐹 ) ∈ ω ) |
29 |
|
ficardom |
⊢ ( 𝐺 ∈ Fin → ( card ‘ 𝐺 ) ∈ ω ) |
30 |
17 29
|
syl |
⊢ ( ( 𝜑 ∧ ¬ 𝐹 ∈ Fin ) → ( card ‘ 𝐺 ) ∈ ω ) |
31 |
28 30
|
ifclda |
⊢ ( 𝜑 → if ( 𝐹 ∈ Fin , ( card ‘ 𝐹 ) , ( card ‘ 𝐺 ) ) ∈ ω ) |
32 |
|
breq2 |
⊢ ( 𝑙 = ∅ → ( 𝑓 ≈ 𝑙 ↔ 𝑓 ≈ ∅ ) ) |
33 |
|
breq2 |
⊢ ( 𝑙 = ∅ → ( 𝑔 ≈ 𝑙 ↔ 𝑔 ≈ ∅ ) ) |
34 |
32 33
|
orbi12d |
⊢ ( 𝑙 = ∅ → ( ( 𝑓 ≈ 𝑙 ∨ 𝑔 ≈ 𝑙 ) ↔ ( 𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅ ) ) ) |
35 |
34
|
3anbi1d |
⊢ ( 𝑙 = ∅ → ( ( ( 𝑓 ≈ 𝑙 ∨ 𝑔 ≈ 𝑙 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) ↔ ( ( 𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅ ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) ) ) |
36 |
35
|
imbi1d |
⊢ ( 𝑙 = ∅ → ( ( ( ( 𝑓 ≈ 𝑙 ∨ 𝑔 ≈ 𝑙 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ↔ ( ( ( 𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅ ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ) |
37 |
36
|
2ralbidv |
⊢ ( 𝑙 = ∅ → ( ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑙 ∨ 𝑔 ≈ 𝑙 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ↔ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅ ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ) |
38 |
37
|
albidv |
⊢ ( 𝑙 = ∅ → ( ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑙 ∨ 𝑔 ≈ 𝑙 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ↔ ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅ ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ) |
39 |
38
|
imbi2d |
⊢ ( 𝑙 = ∅ → ( ( 𝜑 → ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑙 ∨ 𝑔 ≈ 𝑙 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ↔ ( 𝜑 → ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅ ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ) ) |
40 |
|
breq2 |
⊢ ( 𝑙 = 𝑘 → ( 𝑓 ≈ 𝑙 ↔ 𝑓 ≈ 𝑘 ) ) |
41 |
|
breq2 |
⊢ ( 𝑙 = 𝑘 → ( 𝑔 ≈ 𝑙 ↔ 𝑔 ≈ 𝑘 ) ) |
42 |
40 41
|
orbi12d |
⊢ ( 𝑙 = 𝑘 → ( ( 𝑓 ≈ 𝑙 ∨ 𝑔 ≈ 𝑙 ) ↔ ( 𝑓 ≈ 𝑘 ∨ 𝑔 ≈ 𝑘 ) ) ) |
43 |
42
|
3anbi1d |
⊢ ( 𝑙 = 𝑘 → ( ( ( 𝑓 ≈ 𝑙 ∨ 𝑔 ≈ 𝑙 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) ↔ ( ( 𝑓 ≈ 𝑘 ∨ 𝑔 ≈ 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) ) ) |
44 |
43
|
imbi1d |
⊢ ( 𝑙 = 𝑘 → ( ( ( ( 𝑓 ≈ 𝑙 ∨ 𝑔 ≈ 𝑙 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ↔ ( ( ( 𝑓 ≈ 𝑘 ∨ 𝑔 ≈ 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ) |
45 |
44
|
2ralbidv |
⊢ ( 𝑙 = 𝑘 → ( ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑙 ∨ 𝑔 ≈ 𝑙 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ↔ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑘 ∨ 𝑔 ≈ 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ) |
46 |
45
|
albidv |
⊢ ( 𝑙 = 𝑘 → ( ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑙 ∨ 𝑔 ≈ 𝑙 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ↔ ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑘 ∨ 𝑔 ≈ 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ) |
47 |
46
|
imbi2d |
⊢ ( 𝑙 = 𝑘 → ( ( 𝜑 → ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑙 ∨ 𝑔 ≈ 𝑙 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ↔ ( 𝜑 → ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑘 ∨ 𝑔 ≈ 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ) ) |
48 |
|
breq2 |
⊢ ( 𝑙 = suc 𝑘 → ( 𝑓 ≈ 𝑙 ↔ 𝑓 ≈ suc 𝑘 ) ) |
49 |
|
breq2 |
⊢ ( 𝑙 = suc 𝑘 → ( 𝑔 ≈ 𝑙 ↔ 𝑔 ≈ suc 𝑘 ) ) |
50 |
48 49
|
orbi12d |
⊢ ( 𝑙 = suc 𝑘 → ( ( 𝑓 ≈ 𝑙 ∨ 𝑔 ≈ 𝑙 ) ↔ ( 𝑓 ≈ suc 𝑘 ∨ 𝑔 ≈ suc 𝑘 ) ) ) |
51 |
50
|
3anbi1d |
⊢ ( 𝑙 = suc 𝑘 → ( ( ( 𝑓 ≈ 𝑙 ∨ 𝑔 ≈ 𝑙 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) ↔ ( ( 𝑓 ≈ suc 𝑘 ∨ 𝑔 ≈ suc 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) ) ) |
52 |
51
|
imbi1d |
⊢ ( 𝑙 = suc 𝑘 → ( ( ( ( 𝑓 ≈ 𝑙 ∨ 𝑔 ≈ 𝑙 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ↔ ( ( ( 𝑓 ≈ suc 𝑘 ∨ 𝑔 ≈ suc 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ) |
53 |
52
|
2ralbidv |
⊢ ( 𝑙 = suc 𝑘 → ( ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑙 ∨ 𝑔 ≈ 𝑙 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ↔ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ suc 𝑘 ∨ 𝑔 ≈ suc 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ) |
54 |
53
|
albidv |
⊢ ( 𝑙 = suc 𝑘 → ( ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑙 ∨ 𝑔 ≈ 𝑙 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ↔ ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ suc 𝑘 ∨ 𝑔 ≈ suc 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ) |
55 |
54
|
imbi2d |
⊢ ( 𝑙 = suc 𝑘 → ( ( 𝜑 → ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑙 ∨ 𝑔 ≈ 𝑙 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ↔ ( 𝜑 → ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ suc 𝑘 ∨ 𝑔 ≈ suc 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ) ) |
56 |
|
breq2 |
⊢ ( 𝑙 = if ( 𝐹 ∈ Fin , ( card ‘ 𝐹 ) , ( card ‘ 𝐺 ) ) → ( 𝑓 ≈ 𝑙 ↔ 𝑓 ≈ if ( 𝐹 ∈ Fin , ( card ‘ 𝐹 ) , ( card ‘ 𝐺 ) ) ) ) |
57 |
|
breq2 |
⊢ ( 𝑙 = if ( 𝐹 ∈ Fin , ( card ‘ 𝐹 ) , ( card ‘ 𝐺 ) ) → ( 𝑔 ≈ 𝑙 ↔ 𝑔 ≈ if ( 𝐹 ∈ Fin , ( card ‘ 𝐹 ) , ( card ‘ 𝐺 ) ) ) ) |
58 |
56 57
|
orbi12d |
⊢ ( 𝑙 = if ( 𝐹 ∈ Fin , ( card ‘ 𝐹 ) , ( card ‘ 𝐺 ) ) → ( ( 𝑓 ≈ 𝑙 ∨ 𝑔 ≈ 𝑙 ) ↔ ( 𝑓 ≈ if ( 𝐹 ∈ Fin , ( card ‘ 𝐹 ) , ( card ‘ 𝐺 ) ) ∨ 𝑔 ≈ if ( 𝐹 ∈ Fin , ( card ‘ 𝐹 ) , ( card ‘ 𝐺 ) ) ) ) ) |
59 |
58
|
3anbi1d |
⊢ ( 𝑙 = if ( 𝐹 ∈ Fin , ( card ‘ 𝐹 ) , ( card ‘ 𝐺 ) ) → ( ( ( 𝑓 ≈ 𝑙 ∨ 𝑔 ≈ 𝑙 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) ↔ ( ( 𝑓 ≈ if ( 𝐹 ∈ Fin , ( card ‘ 𝐹 ) , ( card ‘ 𝐺 ) ) ∨ 𝑔 ≈ if ( 𝐹 ∈ Fin , ( card ‘ 𝐹 ) , ( card ‘ 𝐺 ) ) ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) ) ) |
60 |
59
|
imbi1d |
⊢ ( 𝑙 = if ( 𝐹 ∈ Fin , ( card ‘ 𝐹 ) , ( card ‘ 𝐺 ) ) → ( ( ( ( 𝑓 ≈ 𝑙 ∨ 𝑔 ≈ 𝑙 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ↔ ( ( ( 𝑓 ≈ if ( 𝐹 ∈ Fin , ( card ‘ 𝐹 ) , ( card ‘ 𝐺 ) ) ∨ 𝑔 ≈ if ( 𝐹 ∈ Fin , ( card ‘ 𝐹 ) , ( card ‘ 𝐺 ) ) ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ) |
61 |
60
|
2ralbidv |
⊢ ( 𝑙 = if ( 𝐹 ∈ Fin , ( card ‘ 𝐹 ) , ( card ‘ 𝐺 ) ) → ( ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑙 ∨ 𝑔 ≈ 𝑙 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ↔ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ if ( 𝐹 ∈ Fin , ( card ‘ 𝐹 ) , ( card ‘ 𝐺 ) ) ∨ 𝑔 ≈ if ( 𝐹 ∈ Fin , ( card ‘ 𝐹 ) , ( card ‘ 𝐺 ) ) ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ) |
62 |
61
|
albidv |
⊢ ( 𝑙 = if ( 𝐹 ∈ Fin , ( card ‘ 𝐹 ) , ( card ‘ 𝐺 ) ) → ( ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑙 ∨ 𝑔 ≈ 𝑙 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ↔ ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ if ( 𝐹 ∈ Fin , ( card ‘ 𝐹 ) , ( card ‘ 𝐺 ) ) ∨ 𝑔 ≈ if ( 𝐹 ∈ Fin , ( card ‘ 𝐹 ) , ( card ‘ 𝐺 ) ) ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ) |
63 |
62
|
imbi2d |
⊢ ( 𝑙 = if ( 𝐹 ∈ Fin , ( card ‘ 𝐹 ) , ( card ‘ 𝐺 ) ) → ( ( 𝜑 → ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑙 ∨ 𝑔 ≈ 𝑙 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ↔ ( 𝜑 → ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ if ( 𝐹 ∈ Fin , ( card ‘ 𝐹 ) , ( card ‘ 𝐺 ) ) ∨ 𝑔 ≈ if ( 𝐹 ∈ Fin , ( card ‘ 𝐹 ) , ( card ‘ 𝐺 ) ) ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ) ) |
64 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∧ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ) ) ∧ ( ( 𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅ ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) ) → 𝐴 ∈ ( Moore ‘ 𝑋 ) ) |
65 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∧ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ) ) ∧ ( ( 𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅ ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) ) → ∀ 𝑠 ∈ 𝒫 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ ( ( 𝑁 ‘ ( 𝑠 ∪ { 𝑦 } ) ) ∖ ( 𝑁 ‘ 𝑠 ) ) 𝑦 ∈ ( 𝑁 ‘ ( 𝑠 ∪ { 𝑧 } ) ) ) |
66 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∧ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ) ) ∧ ( ( 𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅ ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) ) → 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ) |
67 |
66
|
elpwid |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∧ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ) ) ∧ ( ( 𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅ ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) ) → 𝑓 ⊆ ( 𝑋 ∖ ℎ ) ) |
68 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∧ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ) ) ∧ ( ( 𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅ ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) ) → 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ) |
69 |
68
|
elpwid |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∧ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ) ) ∧ ( ( 𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅ ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) ) → 𝑔 ⊆ ( 𝑋 ∖ ℎ ) ) |
70 |
|
simpr2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∧ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ) ) ∧ ( ( 𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅ ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) ) → 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ) |
71 |
|
simpr3 |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∧ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ) ) ∧ ( ( 𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅ ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) ) → ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) |
72 |
|
simpr1 |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∧ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ) ) ∧ ( ( 𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅ ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) ) → ( 𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅ ) ) |
73 |
|
en0 |
⊢ ( 𝑓 ≈ ∅ ↔ 𝑓 = ∅ ) |
74 |
|
en0 |
⊢ ( 𝑔 ≈ ∅ ↔ 𝑔 = ∅ ) |
75 |
73 74
|
orbi12i |
⊢ ( ( 𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅ ) ↔ ( 𝑓 = ∅ ∨ 𝑔 = ∅ ) ) |
76 |
72 75
|
sylib |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∧ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ) ) ∧ ( ( 𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅ ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) ) → ( 𝑓 = ∅ ∨ 𝑔 = ∅ ) ) |
77 |
64 2 3 65 67 69 70 71 76
|
mreexexlem3d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∧ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ) ) ∧ ( ( 𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅ ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) |
78 |
77
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∧ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ) ) → ( ( ( 𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅ ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) |
79 |
78
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅ ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) |
80 |
79
|
alrimiv |
⊢ ( 𝜑 → ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅ ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) |
81 |
|
nfv |
⊢ Ⅎ ℎ 𝜑 |
82 |
|
nfv |
⊢ Ⅎ ℎ 𝑘 ∈ ω |
83 |
|
nfa1 |
⊢ Ⅎ ℎ ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑘 ∨ 𝑔 ≈ 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) |
84 |
81 82 83
|
nf3an |
⊢ Ⅎ ℎ ( 𝜑 ∧ 𝑘 ∈ ω ∧ ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑘 ∨ 𝑔 ≈ 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) |
85 |
|
nfv |
⊢ Ⅎ 𝑓 𝜑 |
86 |
|
nfv |
⊢ Ⅎ 𝑓 𝑘 ∈ ω |
87 |
|
nfra1 |
⊢ Ⅎ 𝑓 ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑘 ∨ 𝑔 ≈ 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) |
88 |
87
|
nfal |
⊢ Ⅎ 𝑓 ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑘 ∨ 𝑔 ≈ 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) |
89 |
85 86 88
|
nf3an |
⊢ Ⅎ 𝑓 ( 𝜑 ∧ 𝑘 ∈ ω ∧ ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑘 ∨ 𝑔 ≈ 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) |
90 |
|
nfv |
⊢ Ⅎ 𝑔 𝜑 |
91 |
|
nfv |
⊢ Ⅎ 𝑔 𝑘 ∈ ω |
92 |
|
nfra2w |
⊢ Ⅎ 𝑔 ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑘 ∨ 𝑔 ≈ 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) |
93 |
92
|
nfal |
⊢ Ⅎ 𝑔 ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑘 ∨ 𝑔 ≈ 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) |
94 |
90 91 93
|
nf3an |
⊢ Ⅎ 𝑔 ( 𝜑 ∧ 𝑘 ∈ ω ∧ ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑘 ∨ 𝑔 ≈ 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) |
95 |
|
nfv |
⊢ Ⅎ 𝑔 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) |
96 |
94 95
|
nfan |
⊢ Ⅎ 𝑔 ( ( 𝜑 ∧ 𝑘 ∈ ω ∧ ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑘 ∨ 𝑔 ≈ 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ∧ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ) |
97 |
1
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ω ∧ ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑘 ∨ 𝑔 ≈ 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) → 𝐴 ∈ ( Moore ‘ 𝑋 ) ) |
98 |
97
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ω ∧ ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑘 ∨ 𝑔 ≈ 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ∧ ( 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∧ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ) ) ∧ ( ( 𝑓 ≈ suc 𝑘 ∨ 𝑔 ≈ suc 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) ) → 𝐴 ∈ ( Moore ‘ 𝑋 ) ) |
99 |
4
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ω ∧ ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑘 ∨ 𝑔 ≈ 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) → ∀ 𝑠 ∈ 𝒫 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ ( ( 𝑁 ‘ ( 𝑠 ∪ { 𝑦 } ) ) ∖ ( 𝑁 ‘ 𝑠 ) ) 𝑦 ∈ ( 𝑁 ‘ ( 𝑠 ∪ { 𝑧 } ) ) ) |
100 |
99
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ω ∧ ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑘 ∨ 𝑔 ≈ 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ∧ ( 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∧ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ) ) ∧ ( ( 𝑓 ≈ suc 𝑘 ∨ 𝑔 ≈ suc 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) ) → ∀ 𝑠 ∈ 𝒫 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ ( ( 𝑁 ‘ ( 𝑠 ∪ { 𝑦 } ) ) ∖ ( 𝑁 ‘ 𝑠 ) ) 𝑦 ∈ ( 𝑁 ‘ ( 𝑠 ∪ { 𝑧 } ) ) ) |
101 |
|
simplrl |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ω ∧ ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑘 ∨ 𝑔 ≈ 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ∧ ( 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∧ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ) ) ∧ ( ( 𝑓 ≈ suc 𝑘 ∨ 𝑔 ≈ suc 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) ) → 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ) |
102 |
101
|
elpwid |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ω ∧ ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑘 ∨ 𝑔 ≈ 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ∧ ( 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∧ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ) ) ∧ ( ( 𝑓 ≈ suc 𝑘 ∨ 𝑔 ≈ suc 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) ) → 𝑓 ⊆ ( 𝑋 ∖ ℎ ) ) |
103 |
|
simplrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ω ∧ ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑘 ∨ 𝑔 ≈ 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ∧ ( 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∧ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ) ) ∧ ( ( 𝑓 ≈ suc 𝑘 ∨ 𝑔 ≈ suc 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) ) → 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ) |
104 |
103
|
elpwid |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ω ∧ ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑘 ∨ 𝑔 ≈ 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ∧ ( 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∧ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ) ) ∧ ( ( 𝑓 ≈ suc 𝑘 ∨ 𝑔 ≈ suc 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) ) → 𝑔 ⊆ ( 𝑋 ∖ ℎ ) ) |
105 |
|
simpr2 |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ω ∧ ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑘 ∨ 𝑔 ≈ 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ∧ ( 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∧ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ) ) ∧ ( ( 𝑓 ≈ suc 𝑘 ∨ 𝑔 ≈ suc 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) ) → 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ) |
106 |
|
simpr3 |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ω ∧ ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑘 ∨ 𝑔 ≈ 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ∧ ( 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∧ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ) ) ∧ ( ( 𝑓 ≈ suc 𝑘 ∨ 𝑔 ≈ suc 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) ) → ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) |
107 |
|
simpll2 |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ω ∧ ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑘 ∨ 𝑔 ≈ 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ∧ ( 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∧ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ) ) ∧ ( ( 𝑓 ≈ suc 𝑘 ∨ 𝑔 ≈ suc 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) ) → 𝑘 ∈ ω ) |
108 |
|
simpll3 |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ω ∧ ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑘 ∨ 𝑔 ≈ 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ∧ ( 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∧ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ) ) ∧ ( ( 𝑓 ≈ suc 𝑘 ∨ 𝑔 ≈ suc 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) ) → ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑘 ∨ 𝑔 ≈ 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) |
109 |
|
simpr1 |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ω ∧ ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑘 ∨ 𝑔 ≈ 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ∧ ( 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∧ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ) ) ∧ ( ( 𝑓 ≈ suc 𝑘 ∨ 𝑔 ≈ suc 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) ) → ( 𝑓 ≈ suc 𝑘 ∨ 𝑔 ≈ suc 𝑘 ) ) |
110 |
98 2 3 100 102 104 105 106 107 108 109
|
mreexexlem4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ω ∧ ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑘 ∨ 𝑔 ≈ 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ∧ ( 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∧ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ) ) ∧ ( ( 𝑓 ≈ suc 𝑘 ∨ 𝑔 ≈ suc 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) |
111 |
110
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ω ∧ ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑘 ∨ 𝑔 ≈ 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ∧ ( 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∧ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ) ) → ( ( ( 𝑓 ≈ suc 𝑘 ∨ 𝑔 ≈ suc 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) |
112 |
111
|
expr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ω ∧ ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑘 ∨ 𝑔 ≈ 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ∧ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ) → ( 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) → ( ( ( 𝑓 ≈ suc 𝑘 ∨ 𝑔 ≈ suc 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ) |
113 |
96 112
|
ralrimi |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ω ∧ ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑘 ∨ 𝑔 ≈ 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ∧ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ) → ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ suc 𝑘 ∨ 𝑔 ≈ suc 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) |
114 |
113
|
ex |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ω ∧ ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑘 ∨ 𝑔 ≈ 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) → ( 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) → ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ suc 𝑘 ∨ 𝑔 ≈ suc 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ) |
115 |
89 114
|
ralrimi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ω ∧ ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑘 ∨ 𝑔 ≈ 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) → ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ suc 𝑘 ∨ 𝑔 ≈ suc 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) |
116 |
84 115
|
alrimi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ω ∧ ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑘 ∨ 𝑔 ≈ 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) → ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ suc 𝑘 ∨ 𝑔 ≈ suc 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) |
117 |
116
|
3exp |
⊢ ( 𝜑 → ( 𝑘 ∈ ω → ( ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑘 ∨ 𝑔 ≈ 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) → ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ suc 𝑘 ∨ 𝑔 ≈ suc 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ) ) |
118 |
117
|
com12 |
⊢ ( 𝑘 ∈ ω → ( 𝜑 → ( ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑘 ∨ 𝑔 ≈ 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) → ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ suc 𝑘 ∨ 𝑔 ≈ suc 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ) ) |
119 |
118
|
a2d |
⊢ ( 𝑘 ∈ ω → ( ( 𝜑 → ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝑘 ∨ 𝑔 ≈ 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) → ( 𝜑 → ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ suc 𝑘 ∨ 𝑔 ≈ suc 𝑘 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ) ) |
120 |
39 47 55 63 80 119
|
finds |
⊢ ( if ( 𝐹 ∈ Fin , ( card ‘ 𝐹 ) , ( card ‘ 𝐺 ) ) ∈ ω → ( 𝜑 → ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ if ( 𝐹 ∈ Fin , ( card ‘ 𝐹 ) , ( card ‘ 𝐺 ) ) ∨ 𝑔 ≈ if ( 𝐹 ∈ Fin , ( card ‘ 𝐹 ) , ( card ‘ 𝐺 ) ) ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) ) |
121 |
31 120
|
mpcom |
⊢ ( 𝜑 → ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ if ( 𝐹 ∈ Fin , ( card ‘ 𝐹 ) , ( card ‘ 𝐺 ) ) ∨ 𝑔 ≈ if ( 𝐹 ∈ Fin , ( card ‘ 𝐹 ) , ( card ‘ 𝐺 ) ) ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑖 ∧ ( 𝑖 ∪ ℎ ) ∈ 𝐼 ) ) ) |
122 |
10 5 6 7 8 26 121
|
mreexexlemd |
⊢ ( 𝜑 → ∃ 𝑞 ∈ 𝒫 𝐺 ( 𝐹 ≈ 𝑞 ∧ ( 𝑞 ∪ 𝐻 ) ∈ 𝐼 ) ) |