| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mreexexlem2d.1 | ⊢ ( 𝜑  →  𝐴  ∈  ( Moore ‘ 𝑋 ) ) | 
						
							| 2 |  | mreexexlem2d.2 | ⊢ 𝑁  =  ( mrCls ‘ 𝐴 ) | 
						
							| 3 |  | mreexexlem2d.3 | ⊢ 𝐼  =  ( mrInd ‘ 𝐴 ) | 
						
							| 4 |  | mreexexlem2d.4 | ⊢ ( 𝜑  →  ∀ 𝑠  ∈  𝒫  𝑋 ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  ( ( 𝑁 ‘ ( 𝑠  ∪  { 𝑦 } ) )  ∖  ( 𝑁 ‘ 𝑠 ) ) 𝑦  ∈  ( 𝑁 ‘ ( 𝑠  ∪  { 𝑧 } ) ) ) | 
						
							| 5 |  | mreexexlem2d.5 | ⊢ ( 𝜑  →  𝐹  ⊆  ( 𝑋  ∖  𝐻 ) ) | 
						
							| 6 |  | mreexexlem2d.6 | ⊢ ( 𝜑  →  𝐺  ⊆  ( 𝑋  ∖  𝐻 ) ) | 
						
							| 7 |  | mreexexlem2d.7 | ⊢ ( 𝜑  →  𝐹  ⊆  ( 𝑁 ‘ ( 𝐺  ∪  𝐻 ) ) ) | 
						
							| 8 |  | mreexexlem2d.8 | ⊢ ( 𝜑  →  ( 𝐹  ∪  𝐻 )  ∈  𝐼 ) | 
						
							| 9 |  | mreexexlem2d.9 | ⊢ ( 𝜑  →  𝑌  ∈  𝐹 ) | 
						
							| 10 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝐺  ⊆  ( 𝑁 ‘ ( ( 𝐹  ∪  𝐻 )  ∖  { 𝑌 } ) ) )  →  𝐹  ⊆  ( 𝑁 ‘ ( 𝐺  ∪  𝐻 ) ) ) | 
						
							| 11 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝐺  ⊆  ( 𝑁 ‘ ( ( 𝐹  ∪  𝐻 )  ∖  { 𝑌 } ) ) )  →  𝐴  ∈  ( Moore ‘ 𝑋 ) ) | 
						
							| 12 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐺  ⊆  ( 𝑁 ‘ ( ( 𝐹  ∪  𝐻 )  ∖  { 𝑌 } ) ) )  →  𝐺  ⊆  ( 𝑁 ‘ ( ( 𝐹  ∪  𝐻 )  ∖  { 𝑌 } ) ) ) | 
						
							| 13 |  | ssun2 | ⊢ 𝐻  ⊆  ( ( 𝐹  ∖  { 𝑌 } )  ∪  𝐻 ) | 
						
							| 14 |  | difundir | ⊢ ( ( 𝐹  ∪  𝐻 )  ∖  { 𝑌 } )  =  ( ( 𝐹  ∖  { 𝑌 } )  ∪  ( 𝐻  ∖  { 𝑌 } ) ) | 
						
							| 15 |  | incom | ⊢ ( 𝐹  ∩  𝐻 )  =  ( 𝐻  ∩  𝐹 ) | 
						
							| 16 |  | ssdifin0 | ⊢ ( 𝐹  ⊆  ( 𝑋  ∖  𝐻 )  →  ( 𝐹  ∩  𝐻 )  =  ∅ ) | 
						
							| 17 | 5 16 | syl | ⊢ ( 𝜑  →  ( 𝐹  ∩  𝐻 )  =  ∅ ) | 
						
							| 18 | 15 17 | eqtr3id | ⊢ ( 𝜑  →  ( 𝐻  ∩  𝐹 )  =  ∅ ) | 
						
							| 19 |  | minel | ⊢ ( ( 𝑌  ∈  𝐹  ∧  ( 𝐻  ∩  𝐹 )  =  ∅ )  →  ¬  𝑌  ∈  𝐻 ) | 
						
							| 20 | 9 18 19 | syl2anc | ⊢ ( 𝜑  →  ¬  𝑌  ∈  𝐻 ) | 
						
							| 21 |  | difsnb | ⊢ ( ¬  𝑌  ∈  𝐻  ↔  ( 𝐻  ∖  { 𝑌 } )  =  𝐻 ) | 
						
							| 22 | 20 21 | sylib | ⊢ ( 𝜑  →  ( 𝐻  ∖  { 𝑌 } )  =  𝐻 ) | 
						
							| 23 | 22 | uneq2d | ⊢ ( 𝜑  →  ( ( 𝐹  ∖  { 𝑌 } )  ∪  ( 𝐻  ∖  { 𝑌 } ) )  =  ( ( 𝐹  ∖  { 𝑌 } )  ∪  𝐻 ) ) | 
						
							| 24 | 14 23 | eqtrid | ⊢ ( 𝜑  →  ( ( 𝐹  ∪  𝐻 )  ∖  { 𝑌 } )  =  ( ( 𝐹  ∖  { 𝑌 } )  ∪  𝐻 ) ) | 
						
							| 25 | 13 24 | sseqtrrid | ⊢ ( 𝜑  →  𝐻  ⊆  ( ( 𝐹  ∪  𝐻 )  ∖  { 𝑌 } ) ) | 
						
							| 26 | 3 1 8 | mrissd | ⊢ ( 𝜑  →  ( 𝐹  ∪  𝐻 )  ⊆  𝑋 ) | 
						
							| 27 | 26 | ssdifssd | ⊢ ( 𝜑  →  ( ( 𝐹  ∪  𝐻 )  ∖  { 𝑌 } )  ⊆  𝑋 ) | 
						
							| 28 | 1 2 27 | mrcssidd | ⊢ ( 𝜑  →  ( ( 𝐹  ∪  𝐻 )  ∖  { 𝑌 } )  ⊆  ( 𝑁 ‘ ( ( 𝐹  ∪  𝐻 )  ∖  { 𝑌 } ) ) ) | 
						
							| 29 | 25 28 | sstrd | ⊢ ( 𝜑  →  𝐻  ⊆  ( 𝑁 ‘ ( ( 𝐹  ∪  𝐻 )  ∖  { 𝑌 } ) ) ) | 
						
							| 30 | 29 | adantr | ⊢ ( ( 𝜑  ∧  𝐺  ⊆  ( 𝑁 ‘ ( ( 𝐹  ∪  𝐻 )  ∖  { 𝑌 } ) ) )  →  𝐻  ⊆  ( 𝑁 ‘ ( ( 𝐹  ∪  𝐻 )  ∖  { 𝑌 } ) ) ) | 
						
							| 31 | 12 30 | unssd | ⊢ ( ( 𝜑  ∧  𝐺  ⊆  ( 𝑁 ‘ ( ( 𝐹  ∪  𝐻 )  ∖  { 𝑌 } ) ) )  →  ( 𝐺  ∪  𝐻 )  ⊆  ( 𝑁 ‘ ( ( 𝐹  ∪  𝐻 )  ∖  { 𝑌 } ) ) ) | 
						
							| 32 | 11 2 | mrcssvd | ⊢ ( ( 𝜑  ∧  𝐺  ⊆  ( 𝑁 ‘ ( ( 𝐹  ∪  𝐻 )  ∖  { 𝑌 } ) ) )  →  ( 𝑁 ‘ ( ( 𝐹  ∪  𝐻 )  ∖  { 𝑌 } ) )  ⊆  𝑋 ) | 
						
							| 33 | 11 2 31 32 | mrcssd | ⊢ ( ( 𝜑  ∧  𝐺  ⊆  ( 𝑁 ‘ ( ( 𝐹  ∪  𝐻 )  ∖  { 𝑌 } ) ) )  →  ( 𝑁 ‘ ( 𝐺  ∪  𝐻 ) )  ⊆  ( 𝑁 ‘ ( 𝑁 ‘ ( ( 𝐹  ∪  𝐻 )  ∖  { 𝑌 } ) ) ) ) | 
						
							| 34 | 27 | adantr | ⊢ ( ( 𝜑  ∧  𝐺  ⊆  ( 𝑁 ‘ ( ( 𝐹  ∪  𝐻 )  ∖  { 𝑌 } ) ) )  →  ( ( 𝐹  ∪  𝐻 )  ∖  { 𝑌 } )  ⊆  𝑋 ) | 
						
							| 35 | 11 2 34 | mrcidmd | ⊢ ( ( 𝜑  ∧  𝐺  ⊆  ( 𝑁 ‘ ( ( 𝐹  ∪  𝐻 )  ∖  { 𝑌 } ) ) )  →  ( 𝑁 ‘ ( 𝑁 ‘ ( ( 𝐹  ∪  𝐻 )  ∖  { 𝑌 } ) ) )  =  ( 𝑁 ‘ ( ( 𝐹  ∪  𝐻 )  ∖  { 𝑌 } ) ) ) | 
						
							| 36 | 33 35 | sseqtrd | ⊢ ( ( 𝜑  ∧  𝐺  ⊆  ( 𝑁 ‘ ( ( 𝐹  ∪  𝐻 )  ∖  { 𝑌 } ) ) )  →  ( 𝑁 ‘ ( 𝐺  ∪  𝐻 ) )  ⊆  ( 𝑁 ‘ ( ( 𝐹  ∪  𝐻 )  ∖  { 𝑌 } ) ) ) | 
						
							| 37 | 10 36 | sstrd | ⊢ ( ( 𝜑  ∧  𝐺  ⊆  ( 𝑁 ‘ ( ( 𝐹  ∪  𝐻 )  ∖  { 𝑌 } ) ) )  →  𝐹  ⊆  ( 𝑁 ‘ ( ( 𝐹  ∪  𝐻 )  ∖  { 𝑌 } ) ) ) | 
						
							| 38 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝐺  ⊆  ( 𝑁 ‘ ( ( 𝐹  ∪  𝐻 )  ∖  { 𝑌 } ) ) )  →  𝑌  ∈  𝐹 ) | 
						
							| 39 | 37 38 | sseldd | ⊢ ( ( 𝜑  ∧  𝐺  ⊆  ( 𝑁 ‘ ( ( 𝐹  ∪  𝐻 )  ∖  { 𝑌 } ) ) )  →  𝑌  ∈  ( 𝑁 ‘ ( ( 𝐹  ∪  𝐻 )  ∖  { 𝑌 } ) ) ) | 
						
							| 40 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝐺  ⊆  ( 𝑁 ‘ ( ( 𝐹  ∪  𝐻 )  ∖  { 𝑌 } ) ) )  →  ( 𝐹  ∪  𝐻 )  ∈  𝐼 ) | 
						
							| 41 |  | ssun1 | ⊢ 𝐹  ⊆  ( 𝐹  ∪  𝐻 ) | 
						
							| 42 | 41 38 | sselid | ⊢ ( ( 𝜑  ∧  𝐺  ⊆  ( 𝑁 ‘ ( ( 𝐹  ∪  𝐻 )  ∖  { 𝑌 } ) ) )  →  𝑌  ∈  ( 𝐹  ∪  𝐻 ) ) | 
						
							| 43 | 2 3 11 40 42 | ismri2dad | ⊢ ( ( 𝜑  ∧  𝐺  ⊆  ( 𝑁 ‘ ( ( 𝐹  ∪  𝐻 )  ∖  { 𝑌 } ) ) )  →  ¬  𝑌  ∈  ( 𝑁 ‘ ( ( 𝐹  ∪  𝐻 )  ∖  { 𝑌 } ) ) ) | 
						
							| 44 | 39 43 | pm2.65da | ⊢ ( 𝜑  →  ¬  𝐺  ⊆  ( 𝑁 ‘ ( ( 𝐹  ∪  𝐻 )  ∖  { 𝑌 } ) ) ) | 
						
							| 45 |  | nss | ⊢ ( ¬  𝐺  ⊆  ( 𝑁 ‘ ( ( 𝐹  ∪  𝐻 )  ∖  { 𝑌 } ) )  ↔  ∃ 𝑔 ( 𝑔  ∈  𝐺  ∧  ¬  𝑔  ∈  ( 𝑁 ‘ ( ( 𝐹  ∪  𝐻 )  ∖  { 𝑌 } ) ) ) ) | 
						
							| 46 | 44 45 | sylib | ⊢ ( 𝜑  →  ∃ 𝑔 ( 𝑔  ∈  𝐺  ∧  ¬  𝑔  ∈  ( 𝑁 ‘ ( ( 𝐹  ∪  𝐻 )  ∖  { 𝑌 } ) ) ) ) | 
						
							| 47 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑔  ∈  𝐺  ∧  ¬  𝑔  ∈  ( 𝑁 ‘ ( ( 𝐹  ∪  𝐻 )  ∖  { 𝑌 } ) ) ) )  →  𝑔  ∈  𝐺 ) | 
						
							| 48 |  | ssun1 | ⊢ ( 𝐹  ∖  { 𝑌 } )  ⊆  ( ( 𝐹  ∖  { 𝑌 } )  ∪  𝐻 ) | 
						
							| 49 | 48 24 | sseqtrrid | ⊢ ( 𝜑  →  ( 𝐹  ∖  { 𝑌 } )  ⊆  ( ( 𝐹  ∪  𝐻 )  ∖  { 𝑌 } ) ) | 
						
							| 50 | 49 28 | sstrd | ⊢ ( 𝜑  →  ( 𝐹  ∖  { 𝑌 } )  ⊆  ( 𝑁 ‘ ( ( 𝐹  ∪  𝐻 )  ∖  { 𝑌 } ) ) ) | 
						
							| 51 | 50 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑔  ∈  𝐺  ∧  ¬  𝑔  ∈  ( 𝑁 ‘ ( ( 𝐹  ∪  𝐻 )  ∖  { 𝑌 } ) ) ) )  →  ( 𝐹  ∖  { 𝑌 } )  ⊆  ( 𝑁 ‘ ( ( 𝐹  ∪  𝐻 )  ∖  { 𝑌 } ) ) ) | 
						
							| 52 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑔  ∈  𝐺  ∧  ¬  𝑔  ∈  ( 𝑁 ‘ ( ( 𝐹  ∪  𝐻 )  ∖  { 𝑌 } ) ) ) )  →  ¬  𝑔  ∈  ( 𝑁 ‘ ( ( 𝐹  ∪  𝐻 )  ∖  { 𝑌 } ) ) ) | 
						
							| 53 | 51 52 | ssneldd | ⊢ ( ( 𝜑  ∧  ( 𝑔  ∈  𝐺  ∧  ¬  𝑔  ∈  ( 𝑁 ‘ ( ( 𝐹  ∪  𝐻 )  ∖  { 𝑌 } ) ) ) )  →  ¬  𝑔  ∈  ( 𝐹  ∖  { 𝑌 } ) ) | 
						
							| 54 |  | unass | ⊢ ( ( ( 𝐹  ∖  { 𝑌 } )  ∪  𝐻 )  ∪  { 𝑔 } )  =  ( ( 𝐹  ∖  { 𝑌 } )  ∪  ( 𝐻  ∪  { 𝑔 } ) ) | 
						
							| 55 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑔  ∈  𝐺  ∧  ¬  𝑔  ∈  ( 𝑁 ‘ ( ( 𝐹  ∪  𝐻 )  ∖  { 𝑌 } ) ) ) )  →  𝐴  ∈  ( Moore ‘ 𝑋 ) ) | 
						
							| 56 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑔  ∈  𝐺  ∧  ¬  𝑔  ∈  ( 𝑁 ‘ ( ( 𝐹  ∪  𝐻 )  ∖  { 𝑌 } ) ) ) )  →  ∀ 𝑠  ∈  𝒫  𝑋 ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  ( ( 𝑁 ‘ ( 𝑠  ∪  { 𝑦 } ) )  ∖  ( 𝑁 ‘ 𝑠 ) ) 𝑦  ∈  ( 𝑁 ‘ ( 𝑠  ∪  { 𝑧 } ) ) ) | 
						
							| 57 | 8 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑔  ∈  𝐺  ∧  ¬  𝑔  ∈  ( 𝑁 ‘ ( ( 𝐹  ∪  𝐻 )  ∖  { 𝑌 } ) ) ) )  →  ( 𝐹  ∪  𝐻 )  ∈  𝐼 ) | 
						
							| 58 |  | difss | ⊢ ( 𝐹  ∖  { 𝑌 } )  ⊆  𝐹 | 
						
							| 59 |  | unss1 | ⊢ ( ( 𝐹  ∖  { 𝑌 } )  ⊆  𝐹  →  ( ( 𝐹  ∖  { 𝑌 } )  ∪  𝐻 )  ⊆  ( 𝐹  ∪  𝐻 ) ) | 
						
							| 60 | 58 59 | mp1i | ⊢ ( ( 𝜑  ∧  ( 𝑔  ∈  𝐺  ∧  ¬  𝑔  ∈  ( 𝑁 ‘ ( ( 𝐹  ∪  𝐻 )  ∖  { 𝑌 } ) ) ) )  →  ( ( 𝐹  ∖  { 𝑌 } )  ∪  𝐻 )  ⊆  ( 𝐹  ∪  𝐻 ) ) | 
						
							| 61 | 55 2 3 57 60 | mrissmrid | ⊢ ( ( 𝜑  ∧  ( 𝑔  ∈  𝐺  ∧  ¬  𝑔  ∈  ( 𝑁 ‘ ( ( 𝐹  ∪  𝐻 )  ∖  { 𝑌 } ) ) ) )  →  ( ( 𝐹  ∖  { 𝑌 } )  ∪  𝐻 )  ∈  𝐼 ) | 
						
							| 62 | 6 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑔  ∈  𝐺  ∧  ¬  𝑔  ∈  ( 𝑁 ‘ ( ( 𝐹  ∪  𝐻 )  ∖  { 𝑌 } ) ) ) )  →  𝐺  ⊆  ( 𝑋  ∖  𝐻 ) ) | 
						
							| 63 | 62 | difss2d | ⊢ ( ( 𝜑  ∧  ( 𝑔  ∈  𝐺  ∧  ¬  𝑔  ∈  ( 𝑁 ‘ ( ( 𝐹  ∪  𝐻 )  ∖  { 𝑌 } ) ) ) )  →  𝐺  ⊆  𝑋 ) | 
						
							| 64 | 63 47 | sseldd | ⊢ ( ( 𝜑  ∧  ( 𝑔  ∈  𝐺  ∧  ¬  𝑔  ∈  ( 𝑁 ‘ ( ( 𝐹  ∪  𝐻 )  ∖  { 𝑌 } ) ) ) )  →  𝑔  ∈  𝑋 ) | 
						
							| 65 | 24 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑔  ∈  𝐺  ∧  ¬  𝑔  ∈  ( 𝑁 ‘ ( ( 𝐹  ∪  𝐻 )  ∖  { 𝑌 } ) ) ) )  →  ( ( 𝐹  ∪  𝐻 )  ∖  { 𝑌 } )  =  ( ( 𝐹  ∖  { 𝑌 } )  ∪  𝐻 ) ) | 
						
							| 66 | 65 | fveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑔  ∈  𝐺  ∧  ¬  𝑔  ∈  ( 𝑁 ‘ ( ( 𝐹  ∪  𝐻 )  ∖  { 𝑌 } ) ) ) )  →  ( 𝑁 ‘ ( ( 𝐹  ∪  𝐻 )  ∖  { 𝑌 } ) )  =  ( 𝑁 ‘ ( ( 𝐹  ∖  { 𝑌 } )  ∪  𝐻 ) ) ) | 
						
							| 67 | 52 66 | neleqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑔  ∈  𝐺  ∧  ¬  𝑔  ∈  ( 𝑁 ‘ ( ( 𝐹  ∪  𝐻 )  ∖  { 𝑌 } ) ) ) )  →  ¬  𝑔  ∈  ( 𝑁 ‘ ( ( 𝐹  ∖  { 𝑌 } )  ∪  𝐻 ) ) ) | 
						
							| 68 | 55 2 3 56 61 64 67 | mreexmrid | ⊢ ( ( 𝜑  ∧  ( 𝑔  ∈  𝐺  ∧  ¬  𝑔  ∈  ( 𝑁 ‘ ( ( 𝐹  ∪  𝐻 )  ∖  { 𝑌 } ) ) ) )  →  ( ( ( 𝐹  ∖  { 𝑌 } )  ∪  𝐻 )  ∪  { 𝑔 } )  ∈  𝐼 ) | 
						
							| 69 | 54 68 | eqeltrrid | ⊢ ( ( 𝜑  ∧  ( 𝑔  ∈  𝐺  ∧  ¬  𝑔  ∈  ( 𝑁 ‘ ( ( 𝐹  ∪  𝐻 )  ∖  { 𝑌 } ) ) ) )  →  ( ( 𝐹  ∖  { 𝑌 } )  ∪  ( 𝐻  ∪  { 𝑔 } ) )  ∈  𝐼 ) | 
						
							| 70 | 47 53 69 | jca32 | ⊢ ( ( 𝜑  ∧  ( 𝑔  ∈  𝐺  ∧  ¬  𝑔  ∈  ( 𝑁 ‘ ( ( 𝐹  ∪  𝐻 )  ∖  { 𝑌 } ) ) ) )  →  ( 𝑔  ∈  𝐺  ∧  ( ¬  𝑔  ∈  ( 𝐹  ∖  { 𝑌 } )  ∧  ( ( 𝐹  ∖  { 𝑌 } )  ∪  ( 𝐻  ∪  { 𝑔 } ) )  ∈  𝐼 ) ) ) | 
						
							| 71 | 70 | ex | ⊢ ( 𝜑  →  ( ( 𝑔  ∈  𝐺  ∧  ¬  𝑔  ∈  ( 𝑁 ‘ ( ( 𝐹  ∪  𝐻 )  ∖  { 𝑌 } ) ) )  →  ( 𝑔  ∈  𝐺  ∧  ( ¬  𝑔  ∈  ( 𝐹  ∖  { 𝑌 } )  ∧  ( ( 𝐹  ∖  { 𝑌 } )  ∪  ( 𝐻  ∪  { 𝑔 } ) )  ∈  𝐼 ) ) ) ) | 
						
							| 72 | 71 | eximdv | ⊢ ( 𝜑  →  ( ∃ 𝑔 ( 𝑔  ∈  𝐺  ∧  ¬  𝑔  ∈  ( 𝑁 ‘ ( ( 𝐹  ∪  𝐻 )  ∖  { 𝑌 } ) ) )  →  ∃ 𝑔 ( 𝑔  ∈  𝐺  ∧  ( ¬  𝑔  ∈  ( 𝐹  ∖  { 𝑌 } )  ∧  ( ( 𝐹  ∖  { 𝑌 } )  ∪  ( 𝐻  ∪  { 𝑔 } ) )  ∈  𝐼 ) ) ) ) | 
						
							| 73 | 46 72 | mpd | ⊢ ( 𝜑  →  ∃ 𝑔 ( 𝑔  ∈  𝐺  ∧  ( ¬  𝑔  ∈  ( 𝐹  ∖  { 𝑌 } )  ∧  ( ( 𝐹  ∖  { 𝑌 } )  ∪  ( 𝐻  ∪  { 𝑔 } ) )  ∈  𝐼 ) ) ) | 
						
							| 74 |  | df-rex | ⊢ ( ∃ 𝑔  ∈  𝐺 ( ¬  𝑔  ∈  ( 𝐹  ∖  { 𝑌 } )  ∧  ( ( 𝐹  ∖  { 𝑌 } )  ∪  ( 𝐻  ∪  { 𝑔 } ) )  ∈  𝐼 )  ↔  ∃ 𝑔 ( 𝑔  ∈  𝐺  ∧  ( ¬  𝑔  ∈  ( 𝐹  ∖  { 𝑌 } )  ∧  ( ( 𝐹  ∖  { 𝑌 } )  ∪  ( 𝐻  ∪  { 𝑔 } ) )  ∈  𝐼 ) ) ) | 
						
							| 75 | 73 74 | sylibr | ⊢ ( 𝜑  →  ∃ 𝑔  ∈  𝐺 ( ¬  𝑔  ∈  ( 𝐹  ∖  { 𝑌 } )  ∧  ( ( 𝐹  ∖  { 𝑌 } )  ∪  ( 𝐻  ∪  { 𝑔 } ) )  ∈  𝐼 ) ) |