Metamath Proof Explorer


Theorem mreexexlem3d

Description: Base case of the induction in mreexexd . (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses mreexexlem2d.1 ( 𝜑𝐴 ∈ ( Moore ‘ 𝑋 ) )
mreexexlem2d.2 𝑁 = ( mrCls ‘ 𝐴 )
mreexexlem2d.3 𝐼 = ( mrInd ‘ 𝐴 )
mreexexlem2d.4 ( 𝜑 → ∀ 𝑠 ∈ 𝒫 𝑋𝑦𝑋𝑧 ∈ ( ( 𝑁 ‘ ( 𝑠 ∪ { 𝑦 } ) ) ∖ ( 𝑁𝑠 ) ) 𝑦 ∈ ( 𝑁 ‘ ( 𝑠 ∪ { 𝑧 } ) ) )
mreexexlem2d.5 ( 𝜑𝐹 ⊆ ( 𝑋𝐻 ) )
mreexexlem2d.6 ( 𝜑𝐺 ⊆ ( 𝑋𝐻 ) )
mreexexlem2d.7 ( 𝜑𝐹 ⊆ ( 𝑁 ‘ ( 𝐺𝐻 ) ) )
mreexexlem2d.8 ( 𝜑 → ( 𝐹𝐻 ) ∈ 𝐼 )
mreexexlem3d.9 ( 𝜑 → ( 𝐹 = ∅ ∨ 𝐺 = ∅ ) )
Assertion mreexexlem3d ( 𝜑 → ∃ 𝑖 ∈ 𝒫 𝐺 ( 𝐹𝑖 ∧ ( 𝑖𝐻 ) ∈ 𝐼 ) )

Proof

Step Hyp Ref Expression
1 mreexexlem2d.1 ( 𝜑𝐴 ∈ ( Moore ‘ 𝑋 ) )
2 mreexexlem2d.2 𝑁 = ( mrCls ‘ 𝐴 )
3 mreexexlem2d.3 𝐼 = ( mrInd ‘ 𝐴 )
4 mreexexlem2d.4 ( 𝜑 → ∀ 𝑠 ∈ 𝒫 𝑋𝑦𝑋𝑧 ∈ ( ( 𝑁 ‘ ( 𝑠 ∪ { 𝑦 } ) ) ∖ ( 𝑁𝑠 ) ) 𝑦 ∈ ( 𝑁 ‘ ( 𝑠 ∪ { 𝑧 } ) ) )
5 mreexexlem2d.5 ( 𝜑𝐹 ⊆ ( 𝑋𝐻 ) )
6 mreexexlem2d.6 ( 𝜑𝐺 ⊆ ( 𝑋𝐻 ) )
7 mreexexlem2d.7 ( 𝜑𝐹 ⊆ ( 𝑁 ‘ ( 𝐺𝐻 ) ) )
8 mreexexlem2d.8 ( 𝜑 → ( 𝐹𝐻 ) ∈ 𝐼 )
9 mreexexlem3d.9 ( 𝜑 → ( 𝐹 = ∅ ∨ 𝐺 = ∅ ) )
10 simpr ( ( 𝜑𝐹 = ∅ ) → 𝐹 = ∅ )
11 1 adantr ( ( 𝜑𝐺 = ∅ ) → 𝐴 ∈ ( Moore ‘ 𝑋 ) )
12 7 adantr ( ( 𝜑𝐺 = ∅ ) → 𝐹 ⊆ ( 𝑁 ‘ ( 𝐺𝐻 ) ) )
13 simpr ( ( 𝜑𝐺 = ∅ ) → 𝐺 = ∅ )
14 13 uneq1d ( ( 𝜑𝐺 = ∅ ) → ( 𝐺𝐻 ) = ( ∅ ∪ 𝐻 ) )
15 uncom ( 𝐻 ∪ ∅ ) = ( ∅ ∪ 𝐻 )
16 un0 ( 𝐻 ∪ ∅ ) = 𝐻
17 15 16 eqtr3i ( ∅ ∪ 𝐻 ) = 𝐻
18 14 17 eqtrdi ( ( 𝜑𝐺 = ∅ ) → ( 𝐺𝐻 ) = 𝐻 )
19 18 fveq2d ( ( 𝜑𝐺 = ∅ ) → ( 𝑁 ‘ ( 𝐺𝐻 ) ) = ( 𝑁𝐻 ) )
20 12 19 sseqtrd ( ( 𝜑𝐺 = ∅ ) → 𝐹 ⊆ ( 𝑁𝐻 ) )
21 8 adantr ( ( 𝜑𝐺 = ∅ ) → ( 𝐹𝐻 ) ∈ 𝐼 )
22 3 11 21 mrissd ( ( 𝜑𝐺 = ∅ ) → ( 𝐹𝐻 ) ⊆ 𝑋 )
23 22 unssbd ( ( 𝜑𝐺 = ∅ ) → 𝐻𝑋 )
24 11 2 23 mrcssidd ( ( 𝜑𝐺 = ∅ ) → 𝐻 ⊆ ( 𝑁𝐻 ) )
25 20 24 unssd ( ( 𝜑𝐺 = ∅ ) → ( 𝐹𝐻 ) ⊆ ( 𝑁𝐻 ) )
26 ssun2 𝐻 ⊆ ( 𝐹𝐻 )
27 26 a1i ( ( 𝜑𝐺 = ∅ ) → 𝐻 ⊆ ( 𝐹𝐻 ) )
28 11 2 3 25 27 21 mrissmrcd ( ( 𝜑𝐺 = ∅ ) → ( 𝐹𝐻 ) = 𝐻 )
29 ssequn1 ( 𝐹𝐻 ↔ ( 𝐹𝐻 ) = 𝐻 )
30 28 29 sylibr ( ( 𝜑𝐺 = ∅ ) → 𝐹𝐻 )
31 5 adantr ( ( 𝜑𝐺 = ∅ ) → 𝐹 ⊆ ( 𝑋𝐻 ) )
32 30 31 ssind ( ( 𝜑𝐺 = ∅ ) → 𝐹 ⊆ ( 𝐻 ∩ ( 𝑋𝐻 ) ) )
33 disjdif ( 𝐻 ∩ ( 𝑋𝐻 ) ) = ∅
34 32 33 sseqtrdi ( ( 𝜑𝐺 = ∅ ) → 𝐹 ⊆ ∅ )
35 ss0b ( 𝐹 ⊆ ∅ ↔ 𝐹 = ∅ )
36 34 35 sylib ( ( 𝜑𝐺 = ∅ ) → 𝐹 = ∅ )
37 10 36 9 mpjaodan ( 𝜑𝐹 = ∅ )
38 0elpw ∅ ∈ 𝒫 𝐺
39 37 38 eqeltrdi ( 𝜑𝐹 ∈ 𝒫 𝐺 )
40 1 elfvexd ( 𝜑𝑋 ∈ V )
41 5 difss2d ( 𝜑𝐹𝑋 )
42 40 41 ssexd ( 𝜑𝐹 ∈ V )
43 enrefg ( 𝐹 ∈ V → 𝐹𝐹 )
44 42 43 syl ( 𝜑𝐹𝐹 )
45 breq2 ( 𝑖 = 𝐹 → ( 𝐹𝑖𝐹𝐹 ) )
46 uneq1 ( 𝑖 = 𝐹 → ( 𝑖𝐻 ) = ( 𝐹𝐻 ) )
47 46 eleq1d ( 𝑖 = 𝐹 → ( ( 𝑖𝐻 ) ∈ 𝐼 ↔ ( 𝐹𝐻 ) ∈ 𝐼 ) )
48 45 47 anbi12d ( 𝑖 = 𝐹 → ( ( 𝐹𝑖 ∧ ( 𝑖𝐻 ) ∈ 𝐼 ) ↔ ( 𝐹𝐹 ∧ ( 𝐹𝐻 ) ∈ 𝐼 ) ) )
49 48 rspcev ( ( 𝐹 ∈ 𝒫 𝐺 ∧ ( 𝐹𝐹 ∧ ( 𝐹𝐻 ) ∈ 𝐼 ) ) → ∃ 𝑖 ∈ 𝒫 𝐺 ( 𝐹𝑖 ∧ ( 𝑖𝐻 ) ∈ 𝐼 ) )
50 39 44 8 49 syl12anc ( 𝜑 → ∃ 𝑖 ∈ 𝒫 𝐺 ( 𝐹𝑖 ∧ ( 𝑖𝐻 ) ∈ 𝐼 ) )