Step |
Hyp |
Ref |
Expression |
1 |
|
mreexexlem2d.1 |
⊢ ( 𝜑 → 𝐴 ∈ ( Moore ‘ 𝑋 ) ) |
2 |
|
mreexexlem2d.2 |
⊢ 𝑁 = ( mrCls ‘ 𝐴 ) |
3 |
|
mreexexlem2d.3 |
⊢ 𝐼 = ( mrInd ‘ 𝐴 ) |
4 |
|
mreexexlem2d.4 |
⊢ ( 𝜑 → ∀ 𝑠 ∈ 𝒫 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ ( ( 𝑁 ‘ ( 𝑠 ∪ { 𝑦 } ) ) ∖ ( 𝑁 ‘ 𝑠 ) ) 𝑦 ∈ ( 𝑁 ‘ ( 𝑠 ∪ { 𝑧 } ) ) ) |
5 |
|
mreexexlem2d.5 |
⊢ ( 𝜑 → 𝐹 ⊆ ( 𝑋 ∖ 𝐻 ) ) |
6 |
|
mreexexlem2d.6 |
⊢ ( 𝜑 → 𝐺 ⊆ ( 𝑋 ∖ 𝐻 ) ) |
7 |
|
mreexexlem2d.7 |
⊢ ( 𝜑 → 𝐹 ⊆ ( 𝑁 ‘ ( 𝐺 ∪ 𝐻 ) ) ) |
8 |
|
mreexexlem2d.8 |
⊢ ( 𝜑 → ( 𝐹 ∪ 𝐻 ) ∈ 𝐼 ) |
9 |
|
mreexexlem3d.9 |
⊢ ( 𝜑 → ( 𝐹 = ∅ ∨ 𝐺 = ∅ ) ) |
10 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐹 = ∅ ) → 𝐹 = ∅ ) |
11 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐺 = ∅ ) → 𝐴 ∈ ( Moore ‘ 𝑋 ) ) |
12 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐺 = ∅ ) → 𝐹 ⊆ ( 𝑁 ‘ ( 𝐺 ∪ 𝐻 ) ) ) |
13 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐺 = ∅ ) → 𝐺 = ∅ ) |
14 |
13
|
uneq1d |
⊢ ( ( 𝜑 ∧ 𝐺 = ∅ ) → ( 𝐺 ∪ 𝐻 ) = ( ∅ ∪ 𝐻 ) ) |
15 |
|
uncom |
⊢ ( 𝐻 ∪ ∅ ) = ( ∅ ∪ 𝐻 ) |
16 |
|
un0 |
⊢ ( 𝐻 ∪ ∅ ) = 𝐻 |
17 |
15 16
|
eqtr3i |
⊢ ( ∅ ∪ 𝐻 ) = 𝐻 |
18 |
14 17
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝐺 = ∅ ) → ( 𝐺 ∪ 𝐻 ) = 𝐻 ) |
19 |
18
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝐺 = ∅ ) → ( 𝑁 ‘ ( 𝐺 ∪ 𝐻 ) ) = ( 𝑁 ‘ 𝐻 ) ) |
20 |
12 19
|
sseqtrd |
⊢ ( ( 𝜑 ∧ 𝐺 = ∅ ) → 𝐹 ⊆ ( 𝑁 ‘ 𝐻 ) ) |
21 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐺 = ∅ ) → ( 𝐹 ∪ 𝐻 ) ∈ 𝐼 ) |
22 |
3 11 21
|
mrissd |
⊢ ( ( 𝜑 ∧ 𝐺 = ∅ ) → ( 𝐹 ∪ 𝐻 ) ⊆ 𝑋 ) |
23 |
22
|
unssbd |
⊢ ( ( 𝜑 ∧ 𝐺 = ∅ ) → 𝐻 ⊆ 𝑋 ) |
24 |
11 2 23
|
mrcssidd |
⊢ ( ( 𝜑 ∧ 𝐺 = ∅ ) → 𝐻 ⊆ ( 𝑁 ‘ 𝐻 ) ) |
25 |
20 24
|
unssd |
⊢ ( ( 𝜑 ∧ 𝐺 = ∅ ) → ( 𝐹 ∪ 𝐻 ) ⊆ ( 𝑁 ‘ 𝐻 ) ) |
26 |
|
ssun2 |
⊢ 𝐻 ⊆ ( 𝐹 ∪ 𝐻 ) |
27 |
26
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐺 = ∅ ) → 𝐻 ⊆ ( 𝐹 ∪ 𝐻 ) ) |
28 |
11 2 3 25 27 21
|
mrissmrcd |
⊢ ( ( 𝜑 ∧ 𝐺 = ∅ ) → ( 𝐹 ∪ 𝐻 ) = 𝐻 ) |
29 |
|
ssequn1 |
⊢ ( 𝐹 ⊆ 𝐻 ↔ ( 𝐹 ∪ 𝐻 ) = 𝐻 ) |
30 |
28 29
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝐺 = ∅ ) → 𝐹 ⊆ 𝐻 ) |
31 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐺 = ∅ ) → 𝐹 ⊆ ( 𝑋 ∖ 𝐻 ) ) |
32 |
30 31
|
ssind |
⊢ ( ( 𝜑 ∧ 𝐺 = ∅ ) → 𝐹 ⊆ ( 𝐻 ∩ ( 𝑋 ∖ 𝐻 ) ) ) |
33 |
|
disjdif |
⊢ ( 𝐻 ∩ ( 𝑋 ∖ 𝐻 ) ) = ∅ |
34 |
32 33
|
sseqtrdi |
⊢ ( ( 𝜑 ∧ 𝐺 = ∅ ) → 𝐹 ⊆ ∅ ) |
35 |
|
ss0b |
⊢ ( 𝐹 ⊆ ∅ ↔ 𝐹 = ∅ ) |
36 |
34 35
|
sylib |
⊢ ( ( 𝜑 ∧ 𝐺 = ∅ ) → 𝐹 = ∅ ) |
37 |
10 36 9
|
mpjaodan |
⊢ ( 𝜑 → 𝐹 = ∅ ) |
38 |
|
0elpw |
⊢ ∅ ∈ 𝒫 𝐺 |
39 |
37 38
|
eqeltrdi |
⊢ ( 𝜑 → 𝐹 ∈ 𝒫 𝐺 ) |
40 |
1
|
elfvexd |
⊢ ( 𝜑 → 𝑋 ∈ V ) |
41 |
5
|
difss2d |
⊢ ( 𝜑 → 𝐹 ⊆ 𝑋 ) |
42 |
40 41
|
ssexd |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
43 |
|
enrefg |
⊢ ( 𝐹 ∈ V → 𝐹 ≈ 𝐹 ) |
44 |
42 43
|
syl |
⊢ ( 𝜑 → 𝐹 ≈ 𝐹 ) |
45 |
|
breq2 |
⊢ ( 𝑖 = 𝐹 → ( 𝐹 ≈ 𝑖 ↔ 𝐹 ≈ 𝐹 ) ) |
46 |
|
uneq1 |
⊢ ( 𝑖 = 𝐹 → ( 𝑖 ∪ 𝐻 ) = ( 𝐹 ∪ 𝐻 ) ) |
47 |
46
|
eleq1d |
⊢ ( 𝑖 = 𝐹 → ( ( 𝑖 ∪ 𝐻 ) ∈ 𝐼 ↔ ( 𝐹 ∪ 𝐻 ) ∈ 𝐼 ) ) |
48 |
45 47
|
anbi12d |
⊢ ( 𝑖 = 𝐹 → ( ( 𝐹 ≈ 𝑖 ∧ ( 𝑖 ∪ 𝐻 ) ∈ 𝐼 ) ↔ ( 𝐹 ≈ 𝐹 ∧ ( 𝐹 ∪ 𝐻 ) ∈ 𝐼 ) ) ) |
49 |
48
|
rspcev |
⊢ ( ( 𝐹 ∈ 𝒫 𝐺 ∧ ( 𝐹 ≈ 𝐹 ∧ ( 𝐹 ∪ 𝐻 ) ∈ 𝐼 ) ) → ∃ 𝑖 ∈ 𝒫 𝐺 ( 𝐹 ≈ 𝑖 ∧ ( 𝑖 ∪ 𝐻 ) ∈ 𝐼 ) ) |
50 |
39 44 8 49
|
syl12anc |
⊢ ( 𝜑 → ∃ 𝑖 ∈ 𝒫 𝐺 ( 𝐹 ≈ 𝑖 ∧ ( 𝑖 ∪ 𝐻 ) ∈ 𝐼 ) ) |