| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mreexexlem2d.1 | ⊢ ( 𝜑  →  𝐴  ∈  ( Moore ‘ 𝑋 ) ) | 
						
							| 2 |  | mreexexlem2d.2 | ⊢ 𝑁  =  ( mrCls ‘ 𝐴 ) | 
						
							| 3 |  | mreexexlem2d.3 | ⊢ 𝐼  =  ( mrInd ‘ 𝐴 ) | 
						
							| 4 |  | mreexexlem2d.4 | ⊢ ( 𝜑  →  ∀ 𝑠  ∈  𝒫  𝑋 ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  ( ( 𝑁 ‘ ( 𝑠  ∪  { 𝑦 } ) )  ∖  ( 𝑁 ‘ 𝑠 ) ) 𝑦  ∈  ( 𝑁 ‘ ( 𝑠  ∪  { 𝑧 } ) ) ) | 
						
							| 5 |  | mreexexlem2d.5 | ⊢ ( 𝜑  →  𝐹  ⊆  ( 𝑋  ∖  𝐻 ) ) | 
						
							| 6 |  | mreexexlem2d.6 | ⊢ ( 𝜑  →  𝐺  ⊆  ( 𝑋  ∖  𝐻 ) ) | 
						
							| 7 |  | mreexexlem2d.7 | ⊢ ( 𝜑  →  𝐹  ⊆  ( 𝑁 ‘ ( 𝐺  ∪  𝐻 ) ) ) | 
						
							| 8 |  | mreexexlem2d.8 | ⊢ ( 𝜑  →  ( 𝐹  ∪  𝐻 )  ∈  𝐼 ) | 
						
							| 9 |  | mreexexlem4d.9 | ⊢ ( 𝜑  →  𝐿  ∈  ω ) | 
						
							| 10 |  | mreexexlem4d.A | ⊢ ( 𝜑  →  ∀ ℎ ∀ 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ ) ∀ 𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ( ( ( 𝑓  ≈  𝐿  ∨  𝑔  ≈  𝐿 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑗  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑗  ∧  ( 𝑗  ∪  ℎ )  ∈  𝐼 ) ) ) | 
						
							| 11 |  | mreexexlem4d.B | ⊢ ( 𝜑  →  ( 𝐹  ≈  suc  𝐿  ∨  𝐺  ≈  suc  𝐿 ) ) | 
						
							| 12 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝐹  =  ∅ )  →  𝐴  ∈  ( Moore ‘ 𝑋 ) ) | 
						
							| 13 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝐹  =  ∅ )  →  ∀ 𝑠  ∈  𝒫  𝑋 ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  ( ( 𝑁 ‘ ( 𝑠  ∪  { 𝑦 } ) )  ∖  ( 𝑁 ‘ 𝑠 ) ) 𝑦  ∈  ( 𝑁 ‘ ( 𝑠  ∪  { 𝑧 } ) ) ) | 
						
							| 14 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝐹  =  ∅ )  →  𝐹  ⊆  ( 𝑋  ∖  𝐻 ) ) | 
						
							| 15 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝐹  =  ∅ )  →  𝐺  ⊆  ( 𝑋  ∖  𝐻 ) ) | 
						
							| 16 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝐹  =  ∅ )  →  𝐹  ⊆  ( 𝑁 ‘ ( 𝐺  ∪  𝐻 ) ) ) | 
						
							| 17 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝐹  =  ∅ )  →  ( 𝐹  ∪  𝐻 )  ∈  𝐼 ) | 
						
							| 18 |  | animorrl | ⊢ ( ( 𝜑  ∧  𝐹  =  ∅ )  →  ( 𝐹  =  ∅  ∨  𝐺  =  ∅ ) ) | 
						
							| 19 | 12 2 3 13 14 15 16 17 18 | mreexexlem3d | ⊢ ( ( 𝜑  ∧  𝐹  =  ∅ )  →  ∃ 𝑗  ∈  𝒫  𝐺 ( 𝐹  ≈  𝑗  ∧  ( 𝑗  ∪  𝐻 )  ∈  𝐼 ) ) | 
						
							| 20 |  | n0 | ⊢ ( 𝐹  ≠  ∅  ↔  ∃ 𝑟 𝑟  ∈  𝐹 ) | 
						
							| 21 | 20 | biimpi | ⊢ ( 𝐹  ≠  ∅  →  ∃ 𝑟 𝑟  ∈  𝐹 ) | 
						
							| 22 | 21 | adantl | ⊢ ( ( 𝜑  ∧  𝐹  ≠  ∅ )  →  ∃ 𝑟 𝑟  ∈  𝐹 ) | 
						
							| 23 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑟  ∈  𝐹 )  →  𝐴  ∈  ( Moore ‘ 𝑋 ) ) | 
						
							| 24 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑟  ∈  𝐹 )  →  ∀ 𝑠  ∈  𝒫  𝑋 ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  ( ( 𝑁 ‘ ( 𝑠  ∪  { 𝑦 } ) )  ∖  ( 𝑁 ‘ 𝑠 ) ) 𝑦  ∈  ( 𝑁 ‘ ( 𝑠  ∪  { 𝑧 } ) ) ) | 
						
							| 25 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑟  ∈  𝐹 )  →  𝐹  ⊆  ( 𝑋  ∖  𝐻 ) ) | 
						
							| 26 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑟  ∈  𝐹 )  →  𝐺  ⊆  ( 𝑋  ∖  𝐻 ) ) | 
						
							| 27 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑟  ∈  𝐹 )  →  𝐹  ⊆  ( 𝑁 ‘ ( 𝐺  ∪  𝐻 ) ) ) | 
						
							| 28 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑟  ∈  𝐹 )  →  ( 𝐹  ∪  𝐻 )  ∈  𝐼 ) | 
						
							| 29 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑟  ∈  𝐹 )  →  𝑟  ∈  𝐹 ) | 
						
							| 30 | 23 2 3 24 25 26 27 28 29 | mreexexlem2d | ⊢ ( ( 𝜑  ∧  𝑟  ∈  𝐹 )  →  ∃ 𝑞  ∈  𝐺 ( ¬  𝑞  ∈  ( 𝐹  ∖  { 𝑟 } )  ∧  ( ( 𝐹  ∖  { 𝑟 } )  ∪  ( 𝐻  ∪  { 𝑞 } ) )  ∈  𝐼 ) ) | 
						
							| 31 |  | 3anass | ⊢ ( ( 𝑞  ∈  𝐺  ∧  ¬  𝑞  ∈  ( 𝐹  ∖  { 𝑟 } )  ∧  ( ( 𝐹  ∖  { 𝑟 } )  ∪  ( 𝐻  ∪  { 𝑞 } ) )  ∈  𝐼 )  ↔  ( 𝑞  ∈  𝐺  ∧  ( ¬  𝑞  ∈  ( 𝐹  ∖  { 𝑟 } )  ∧  ( ( 𝐹  ∖  { 𝑟 } )  ∪  ( 𝐻  ∪  { 𝑞 } ) )  ∈  𝐼 ) ) ) | 
						
							| 32 | 1 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  𝐹 )  ∧  ( 𝑞  ∈  𝐺  ∧  ¬  𝑞  ∈  ( 𝐹  ∖  { 𝑟 } )  ∧  ( ( 𝐹  ∖  { 𝑟 } )  ∪  ( 𝐻  ∪  { 𝑞 } ) )  ∈  𝐼 ) )  →  𝐴  ∈  ( Moore ‘ 𝑋 ) ) | 
						
							| 33 | 32 | elfvexd | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  𝐹 )  ∧  ( 𝑞  ∈  𝐺  ∧  ¬  𝑞  ∈  ( 𝐹  ∖  { 𝑟 } )  ∧  ( ( 𝐹  ∖  { 𝑟 } )  ∪  ( 𝐻  ∪  { 𝑞 } ) )  ∈  𝐼 ) )  →  𝑋  ∈  V ) | 
						
							| 34 |  | simpr2 | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  𝐹 )  ∧  ( 𝑞  ∈  𝐺  ∧  ¬  𝑞  ∈  ( 𝐹  ∖  { 𝑟 } )  ∧  ( ( 𝐹  ∖  { 𝑟 } )  ∪  ( 𝐻  ∪  { 𝑞 } ) )  ∈  𝐼 ) )  →  ¬  𝑞  ∈  ( 𝐹  ∖  { 𝑟 } ) ) | 
						
							| 35 |  | difsnb | ⊢ ( ¬  𝑞  ∈  ( 𝐹  ∖  { 𝑟 } )  ↔  ( ( 𝐹  ∖  { 𝑟 } )  ∖  { 𝑞 } )  =  ( 𝐹  ∖  { 𝑟 } ) ) | 
						
							| 36 | 34 35 | sylib | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  𝐹 )  ∧  ( 𝑞  ∈  𝐺  ∧  ¬  𝑞  ∈  ( 𝐹  ∖  { 𝑟 } )  ∧  ( ( 𝐹  ∖  { 𝑟 } )  ∪  ( 𝐻  ∪  { 𝑞 } ) )  ∈  𝐼 ) )  →  ( ( 𝐹  ∖  { 𝑟 } )  ∖  { 𝑞 } )  =  ( 𝐹  ∖  { 𝑟 } ) ) | 
						
							| 37 | 5 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  𝐹 )  ∧  ( 𝑞  ∈  𝐺  ∧  ¬  𝑞  ∈  ( 𝐹  ∖  { 𝑟 } )  ∧  ( ( 𝐹  ∖  { 𝑟 } )  ∪  ( 𝐻  ∪  { 𝑞 } ) )  ∈  𝐼 ) )  →  𝐹  ⊆  ( 𝑋  ∖  𝐻 ) ) | 
						
							| 38 | 37 | ssdifssd | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  𝐹 )  ∧  ( 𝑞  ∈  𝐺  ∧  ¬  𝑞  ∈  ( 𝐹  ∖  { 𝑟 } )  ∧  ( ( 𝐹  ∖  { 𝑟 } )  ∪  ( 𝐻  ∪  { 𝑞 } ) )  ∈  𝐼 ) )  →  ( 𝐹  ∖  { 𝑟 } )  ⊆  ( 𝑋  ∖  𝐻 ) ) | 
						
							| 39 | 38 | ssdifd | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  𝐹 )  ∧  ( 𝑞  ∈  𝐺  ∧  ¬  𝑞  ∈  ( 𝐹  ∖  { 𝑟 } )  ∧  ( ( 𝐹  ∖  { 𝑟 } )  ∪  ( 𝐻  ∪  { 𝑞 } ) )  ∈  𝐼 ) )  →  ( ( 𝐹  ∖  { 𝑟 } )  ∖  { 𝑞 } )  ⊆  ( ( 𝑋  ∖  𝐻 )  ∖  { 𝑞 } ) ) | 
						
							| 40 | 36 39 | eqsstrrd | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  𝐹 )  ∧  ( 𝑞  ∈  𝐺  ∧  ¬  𝑞  ∈  ( 𝐹  ∖  { 𝑟 } )  ∧  ( ( 𝐹  ∖  { 𝑟 } )  ∪  ( 𝐻  ∪  { 𝑞 } ) )  ∈  𝐼 ) )  →  ( 𝐹  ∖  { 𝑟 } )  ⊆  ( ( 𝑋  ∖  𝐻 )  ∖  { 𝑞 } ) ) | 
						
							| 41 |  | difun1 | ⊢ ( 𝑋  ∖  ( 𝐻  ∪  { 𝑞 } ) )  =  ( ( 𝑋  ∖  𝐻 )  ∖  { 𝑞 } ) | 
						
							| 42 | 40 41 | sseqtrrdi | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  𝐹 )  ∧  ( 𝑞  ∈  𝐺  ∧  ¬  𝑞  ∈  ( 𝐹  ∖  { 𝑟 } )  ∧  ( ( 𝐹  ∖  { 𝑟 } )  ∪  ( 𝐻  ∪  { 𝑞 } ) )  ∈  𝐼 ) )  →  ( 𝐹  ∖  { 𝑟 } )  ⊆  ( 𝑋  ∖  ( 𝐻  ∪  { 𝑞 } ) ) ) | 
						
							| 43 | 6 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  𝐹 )  ∧  ( 𝑞  ∈  𝐺  ∧  ¬  𝑞  ∈  ( 𝐹  ∖  { 𝑟 } )  ∧  ( ( 𝐹  ∖  { 𝑟 } )  ∪  ( 𝐻  ∪  { 𝑞 } ) )  ∈  𝐼 ) )  →  𝐺  ⊆  ( 𝑋  ∖  𝐻 ) ) | 
						
							| 44 | 43 | ssdifd | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  𝐹 )  ∧  ( 𝑞  ∈  𝐺  ∧  ¬  𝑞  ∈  ( 𝐹  ∖  { 𝑟 } )  ∧  ( ( 𝐹  ∖  { 𝑟 } )  ∪  ( 𝐻  ∪  { 𝑞 } ) )  ∈  𝐼 ) )  →  ( 𝐺  ∖  { 𝑞 } )  ⊆  ( ( 𝑋  ∖  𝐻 )  ∖  { 𝑞 } ) ) | 
						
							| 45 | 44 41 | sseqtrrdi | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  𝐹 )  ∧  ( 𝑞  ∈  𝐺  ∧  ¬  𝑞  ∈  ( 𝐹  ∖  { 𝑟 } )  ∧  ( ( 𝐹  ∖  { 𝑟 } )  ∪  ( 𝐻  ∪  { 𝑞 } ) )  ∈  𝐼 ) )  →  ( 𝐺  ∖  { 𝑞 } )  ⊆  ( 𝑋  ∖  ( 𝐻  ∪  { 𝑞 } ) ) ) | 
						
							| 46 | 7 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  𝐹 )  ∧  ( 𝑞  ∈  𝐺  ∧  ¬  𝑞  ∈  ( 𝐹  ∖  { 𝑟 } )  ∧  ( ( 𝐹  ∖  { 𝑟 } )  ∪  ( 𝐻  ∪  { 𝑞 } ) )  ∈  𝐼 ) )  →  𝐹  ⊆  ( 𝑁 ‘ ( 𝐺  ∪  𝐻 ) ) ) | 
						
							| 47 |  | simpr1 | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  𝐹 )  ∧  ( 𝑞  ∈  𝐺  ∧  ¬  𝑞  ∈  ( 𝐹  ∖  { 𝑟 } )  ∧  ( ( 𝐹  ∖  { 𝑟 } )  ∪  ( 𝐻  ∪  { 𝑞 } ) )  ∈  𝐼 ) )  →  𝑞  ∈  𝐺 ) | 
						
							| 48 |  | uncom | ⊢ ( 𝐻  ∪  { 𝑞 } )  =  ( { 𝑞 }  ∪  𝐻 ) | 
						
							| 49 | 48 | uneq2i | ⊢ ( ( 𝐺  ∖  { 𝑞 } )  ∪  ( 𝐻  ∪  { 𝑞 } ) )  =  ( ( 𝐺  ∖  { 𝑞 } )  ∪  ( { 𝑞 }  ∪  𝐻 ) ) | 
						
							| 50 |  | unass | ⊢ ( ( ( 𝐺  ∖  { 𝑞 } )  ∪  { 𝑞 } )  ∪  𝐻 )  =  ( ( 𝐺  ∖  { 𝑞 } )  ∪  ( { 𝑞 }  ∪  𝐻 ) ) | 
						
							| 51 |  | difsnid | ⊢ ( 𝑞  ∈  𝐺  →  ( ( 𝐺  ∖  { 𝑞 } )  ∪  { 𝑞 } )  =  𝐺 ) | 
						
							| 52 | 51 | uneq1d | ⊢ ( 𝑞  ∈  𝐺  →  ( ( ( 𝐺  ∖  { 𝑞 } )  ∪  { 𝑞 } )  ∪  𝐻 )  =  ( 𝐺  ∪  𝐻 ) ) | 
						
							| 53 | 50 52 | eqtr3id | ⊢ ( 𝑞  ∈  𝐺  →  ( ( 𝐺  ∖  { 𝑞 } )  ∪  ( { 𝑞 }  ∪  𝐻 ) )  =  ( 𝐺  ∪  𝐻 ) ) | 
						
							| 54 | 49 53 | eqtrid | ⊢ ( 𝑞  ∈  𝐺  →  ( ( 𝐺  ∖  { 𝑞 } )  ∪  ( 𝐻  ∪  { 𝑞 } ) )  =  ( 𝐺  ∪  𝐻 ) ) | 
						
							| 55 | 47 54 | syl | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  𝐹 )  ∧  ( 𝑞  ∈  𝐺  ∧  ¬  𝑞  ∈  ( 𝐹  ∖  { 𝑟 } )  ∧  ( ( 𝐹  ∖  { 𝑟 } )  ∪  ( 𝐻  ∪  { 𝑞 } ) )  ∈  𝐼 ) )  →  ( ( 𝐺  ∖  { 𝑞 } )  ∪  ( 𝐻  ∪  { 𝑞 } ) )  =  ( 𝐺  ∪  𝐻 ) ) | 
						
							| 56 | 55 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  𝐹 )  ∧  ( 𝑞  ∈  𝐺  ∧  ¬  𝑞  ∈  ( 𝐹  ∖  { 𝑟 } )  ∧  ( ( 𝐹  ∖  { 𝑟 } )  ∪  ( 𝐻  ∪  { 𝑞 } ) )  ∈  𝐼 ) )  →  ( 𝑁 ‘ ( ( 𝐺  ∖  { 𝑞 } )  ∪  ( 𝐻  ∪  { 𝑞 } ) ) )  =  ( 𝑁 ‘ ( 𝐺  ∪  𝐻 ) ) ) | 
						
							| 57 | 46 56 | sseqtrrd | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  𝐹 )  ∧  ( 𝑞  ∈  𝐺  ∧  ¬  𝑞  ∈  ( 𝐹  ∖  { 𝑟 } )  ∧  ( ( 𝐹  ∖  { 𝑟 } )  ∪  ( 𝐻  ∪  { 𝑞 } ) )  ∈  𝐼 ) )  →  𝐹  ⊆  ( 𝑁 ‘ ( ( 𝐺  ∖  { 𝑞 } )  ∪  ( 𝐻  ∪  { 𝑞 } ) ) ) ) | 
						
							| 58 | 57 | ssdifssd | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  𝐹 )  ∧  ( 𝑞  ∈  𝐺  ∧  ¬  𝑞  ∈  ( 𝐹  ∖  { 𝑟 } )  ∧  ( ( 𝐹  ∖  { 𝑟 } )  ∪  ( 𝐻  ∪  { 𝑞 } ) )  ∈  𝐼 ) )  →  ( 𝐹  ∖  { 𝑟 } )  ⊆  ( 𝑁 ‘ ( ( 𝐺  ∖  { 𝑞 } )  ∪  ( 𝐻  ∪  { 𝑞 } ) ) ) ) | 
						
							| 59 |  | simpr3 | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  𝐹 )  ∧  ( 𝑞  ∈  𝐺  ∧  ¬  𝑞  ∈  ( 𝐹  ∖  { 𝑟 } )  ∧  ( ( 𝐹  ∖  { 𝑟 } )  ∪  ( 𝐻  ∪  { 𝑞 } ) )  ∈  𝐼 ) )  →  ( ( 𝐹  ∖  { 𝑟 } )  ∪  ( 𝐻  ∪  { 𝑞 } ) )  ∈  𝐼 ) | 
						
							| 60 | 11 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  𝐹 )  ∧  ( 𝑞  ∈  𝐺  ∧  ¬  𝑞  ∈  ( 𝐹  ∖  { 𝑟 } )  ∧  ( ( 𝐹  ∖  { 𝑟 } )  ∪  ( 𝐻  ∪  { 𝑞 } ) )  ∈  𝐼 ) )  →  ( 𝐹  ≈  suc  𝐿  ∨  𝐺  ≈  suc  𝐿 ) ) | 
						
							| 61 | 9 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  𝐹 )  ∧  ( 𝑞  ∈  𝐺  ∧  ¬  𝑞  ∈  ( 𝐹  ∖  { 𝑟 } )  ∧  ( ( 𝐹  ∖  { 𝑟 } )  ∪  ( 𝐻  ∪  { 𝑞 } ) )  ∈  𝐼 ) )  →  𝐿  ∈  ω ) | 
						
							| 62 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  𝐹 )  ∧  ( 𝑞  ∈  𝐺  ∧  ¬  𝑞  ∈  ( 𝐹  ∖  { 𝑟 } )  ∧  ( ( 𝐹  ∖  { 𝑟 } )  ∪  ( 𝐻  ∪  { 𝑞 } ) )  ∈  𝐼 ) )  →  𝑟  ∈  𝐹 ) | 
						
							| 63 |  | 3anan12 | ⊢ ( ( 𝐿  ∈  ω  ∧  𝐹  ≈  suc  𝐿  ∧  𝑟  ∈  𝐹 )  ↔  ( 𝐹  ≈  suc  𝐿  ∧  ( 𝐿  ∈  ω  ∧  𝑟  ∈  𝐹 ) ) ) | 
						
							| 64 |  | dif1ennn | ⊢ ( ( 𝐿  ∈  ω  ∧  𝐹  ≈  suc  𝐿  ∧  𝑟  ∈  𝐹 )  →  ( 𝐹  ∖  { 𝑟 } )  ≈  𝐿 ) | 
						
							| 65 | 63 64 | sylbir | ⊢ ( ( 𝐹  ≈  suc  𝐿  ∧  ( 𝐿  ∈  ω  ∧  𝑟  ∈  𝐹 ) )  →  ( 𝐹  ∖  { 𝑟 } )  ≈  𝐿 ) | 
						
							| 66 | 65 | expcom | ⊢ ( ( 𝐿  ∈  ω  ∧  𝑟  ∈  𝐹 )  →  ( 𝐹  ≈  suc  𝐿  →  ( 𝐹  ∖  { 𝑟 } )  ≈  𝐿 ) ) | 
						
							| 67 | 61 62 66 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  𝐹 )  ∧  ( 𝑞  ∈  𝐺  ∧  ¬  𝑞  ∈  ( 𝐹  ∖  { 𝑟 } )  ∧  ( ( 𝐹  ∖  { 𝑟 } )  ∪  ( 𝐻  ∪  { 𝑞 } ) )  ∈  𝐼 ) )  →  ( 𝐹  ≈  suc  𝐿  →  ( 𝐹  ∖  { 𝑟 } )  ≈  𝐿 ) ) | 
						
							| 68 |  | 3anan12 | ⊢ ( ( 𝐿  ∈  ω  ∧  𝐺  ≈  suc  𝐿  ∧  𝑞  ∈  𝐺 )  ↔  ( 𝐺  ≈  suc  𝐿  ∧  ( 𝐿  ∈  ω  ∧  𝑞  ∈  𝐺 ) ) ) | 
						
							| 69 |  | dif1ennn | ⊢ ( ( 𝐿  ∈  ω  ∧  𝐺  ≈  suc  𝐿  ∧  𝑞  ∈  𝐺 )  →  ( 𝐺  ∖  { 𝑞 } )  ≈  𝐿 ) | 
						
							| 70 | 68 69 | sylbir | ⊢ ( ( 𝐺  ≈  suc  𝐿  ∧  ( 𝐿  ∈  ω  ∧  𝑞  ∈  𝐺 ) )  →  ( 𝐺  ∖  { 𝑞 } )  ≈  𝐿 ) | 
						
							| 71 | 70 | expcom | ⊢ ( ( 𝐿  ∈  ω  ∧  𝑞  ∈  𝐺 )  →  ( 𝐺  ≈  suc  𝐿  →  ( 𝐺  ∖  { 𝑞 } )  ≈  𝐿 ) ) | 
						
							| 72 | 61 47 71 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  𝐹 )  ∧  ( 𝑞  ∈  𝐺  ∧  ¬  𝑞  ∈  ( 𝐹  ∖  { 𝑟 } )  ∧  ( ( 𝐹  ∖  { 𝑟 } )  ∪  ( 𝐻  ∪  { 𝑞 } ) )  ∈  𝐼 ) )  →  ( 𝐺  ≈  suc  𝐿  →  ( 𝐺  ∖  { 𝑞 } )  ≈  𝐿 ) ) | 
						
							| 73 | 67 72 | orim12d | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  𝐹 )  ∧  ( 𝑞  ∈  𝐺  ∧  ¬  𝑞  ∈  ( 𝐹  ∖  { 𝑟 } )  ∧  ( ( 𝐹  ∖  { 𝑟 } )  ∪  ( 𝐻  ∪  { 𝑞 } ) )  ∈  𝐼 ) )  →  ( ( 𝐹  ≈  suc  𝐿  ∨  𝐺  ≈  suc  𝐿 )  →  ( ( 𝐹  ∖  { 𝑟 } )  ≈  𝐿  ∨  ( 𝐺  ∖  { 𝑞 } )  ≈  𝐿 ) ) ) | 
						
							| 74 | 60 73 | mpd | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  𝐹 )  ∧  ( 𝑞  ∈  𝐺  ∧  ¬  𝑞  ∈  ( 𝐹  ∖  { 𝑟 } )  ∧  ( ( 𝐹  ∖  { 𝑟 } )  ∪  ( 𝐻  ∪  { 𝑞 } ) )  ∈  𝐼 ) )  →  ( ( 𝐹  ∖  { 𝑟 } )  ≈  𝐿  ∨  ( 𝐺  ∖  { 𝑞 } )  ≈  𝐿 ) ) | 
						
							| 75 | 10 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  𝐹 )  ∧  ( 𝑞  ∈  𝐺  ∧  ¬  𝑞  ∈  ( 𝐹  ∖  { 𝑟 } )  ∧  ( ( 𝐹  ∖  { 𝑟 } )  ∪  ( 𝐻  ∪  { 𝑞 } ) )  ∈  𝐼 ) )  →  ∀ ℎ ∀ 𝑓  ∈  𝒫  ( 𝑋  ∖  ℎ ) ∀ 𝑔  ∈  𝒫  ( 𝑋  ∖  ℎ ) ( ( ( 𝑓  ≈  𝐿  ∨  𝑔  ≈  𝐿 )  ∧  𝑓  ⊆  ( 𝑁 ‘ ( 𝑔  ∪  ℎ ) )  ∧  ( 𝑓  ∪  ℎ )  ∈  𝐼 )  →  ∃ 𝑗  ∈  𝒫  𝑔 ( 𝑓  ≈  𝑗  ∧  ( 𝑗  ∪  ℎ )  ∈  𝐼 ) ) ) | 
						
							| 76 | 33 42 45 58 59 74 75 | mreexexlemd | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  𝐹 )  ∧  ( 𝑞  ∈  𝐺  ∧  ¬  𝑞  ∈  ( 𝐹  ∖  { 𝑟 } )  ∧  ( ( 𝐹  ∖  { 𝑟 } )  ∪  ( 𝐻  ∪  { 𝑞 } ) )  ∈  𝐼 ) )  →  ∃ 𝑖  ∈  𝒫  ( 𝐺  ∖  { 𝑞 } ) ( ( 𝐹  ∖  { 𝑟 } )  ≈  𝑖  ∧  ( 𝑖  ∪  ( 𝐻  ∪  { 𝑞 } ) )  ∈  𝐼 ) ) | 
						
							| 77 | 33 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  𝐹 )  ∧  ( 𝑞  ∈  𝐺  ∧  ¬  𝑞  ∈  ( 𝐹  ∖  { 𝑟 } )  ∧  ( ( 𝐹  ∖  { 𝑟 } )  ∪  ( 𝐻  ∪  { 𝑞 } ) )  ∈  𝐼 ) )  ∧  ( 𝑖  ∈  𝒫  ( 𝐺  ∖  { 𝑞 } )  ∧  ( ( 𝐹  ∖  { 𝑟 } )  ≈  𝑖  ∧  ( 𝑖  ∪  ( 𝐻  ∪  { 𝑞 } ) )  ∈  𝐼 ) ) )  →  𝑋  ∈  V ) | 
						
							| 78 | 6 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  𝐹 )  ∧  ( 𝑞  ∈  𝐺  ∧  ¬  𝑞  ∈  ( 𝐹  ∖  { 𝑟 } )  ∧  ( ( 𝐹  ∖  { 𝑟 } )  ∪  ( 𝐻  ∪  { 𝑞 } ) )  ∈  𝐼 ) )  ∧  ( 𝑖  ∈  𝒫  ( 𝐺  ∖  { 𝑞 } )  ∧  ( ( 𝐹  ∖  { 𝑟 } )  ≈  𝑖  ∧  ( 𝑖  ∪  ( 𝐻  ∪  { 𝑞 } ) )  ∈  𝐼 ) ) )  →  𝐺  ⊆  ( 𝑋  ∖  𝐻 ) ) | 
						
							| 79 | 78 | difss2d | ⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  𝐹 )  ∧  ( 𝑞  ∈  𝐺  ∧  ¬  𝑞  ∈  ( 𝐹  ∖  { 𝑟 } )  ∧  ( ( 𝐹  ∖  { 𝑟 } )  ∪  ( 𝐻  ∪  { 𝑞 } ) )  ∈  𝐼 ) )  ∧  ( 𝑖  ∈  𝒫  ( 𝐺  ∖  { 𝑞 } )  ∧  ( ( 𝐹  ∖  { 𝑟 } )  ≈  𝑖  ∧  ( 𝑖  ∪  ( 𝐻  ∪  { 𝑞 } ) )  ∈  𝐼 ) ) )  →  𝐺  ⊆  𝑋 ) | 
						
							| 80 | 77 79 | ssexd | ⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  𝐹 )  ∧  ( 𝑞  ∈  𝐺  ∧  ¬  𝑞  ∈  ( 𝐹  ∖  { 𝑟 } )  ∧  ( ( 𝐹  ∖  { 𝑟 } )  ∪  ( 𝐻  ∪  { 𝑞 } ) )  ∈  𝐼 ) )  ∧  ( 𝑖  ∈  𝒫  ( 𝐺  ∖  { 𝑞 } )  ∧  ( ( 𝐹  ∖  { 𝑟 } )  ≈  𝑖  ∧  ( 𝑖  ∪  ( 𝐻  ∪  { 𝑞 } ) )  ∈  𝐼 ) ) )  →  𝐺  ∈  V ) | 
						
							| 81 |  | simprl | ⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  𝐹 )  ∧  ( 𝑞  ∈  𝐺  ∧  ¬  𝑞  ∈  ( 𝐹  ∖  { 𝑟 } )  ∧  ( ( 𝐹  ∖  { 𝑟 } )  ∪  ( 𝐻  ∪  { 𝑞 } ) )  ∈  𝐼 ) )  ∧  ( 𝑖  ∈  𝒫  ( 𝐺  ∖  { 𝑞 } )  ∧  ( ( 𝐹  ∖  { 𝑟 } )  ≈  𝑖  ∧  ( 𝑖  ∪  ( 𝐻  ∪  { 𝑞 } ) )  ∈  𝐼 ) ) )  →  𝑖  ∈  𝒫  ( 𝐺  ∖  { 𝑞 } ) ) | 
						
							| 82 | 81 | elpwid | ⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  𝐹 )  ∧  ( 𝑞  ∈  𝐺  ∧  ¬  𝑞  ∈  ( 𝐹  ∖  { 𝑟 } )  ∧  ( ( 𝐹  ∖  { 𝑟 } )  ∪  ( 𝐻  ∪  { 𝑞 } ) )  ∈  𝐼 ) )  ∧  ( 𝑖  ∈  𝒫  ( 𝐺  ∖  { 𝑞 } )  ∧  ( ( 𝐹  ∖  { 𝑟 } )  ≈  𝑖  ∧  ( 𝑖  ∪  ( 𝐻  ∪  { 𝑞 } ) )  ∈  𝐼 ) ) )  →  𝑖  ⊆  ( 𝐺  ∖  { 𝑞 } ) ) | 
						
							| 83 | 82 | difss2d | ⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  𝐹 )  ∧  ( 𝑞  ∈  𝐺  ∧  ¬  𝑞  ∈  ( 𝐹  ∖  { 𝑟 } )  ∧  ( ( 𝐹  ∖  { 𝑟 } )  ∪  ( 𝐻  ∪  { 𝑞 } ) )  ∈  𝐼 ) )  ∧  ( 𝑖  ∈  𝒫  ( 𝐺  ∖  { 𝑞 } )  ∧  ( ( 𝐹  ∖  { 𝑟 } )  ≈  𝑖  ∧  ( 𝑖  ∪  ( 𝐻  ∪  { 𝑞 } ) )  ∈  𝐼 ) ) )  →  𝑖  ⊆  𝐺 ) | 
						
							| 84 |  | simplr1 | ⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  𝐹 )  ∧  ( 𝑞  ∈  𝐺  ∧  ¬  𝑞  ∈  ( 𝐹  ∖  { 𝑟 } )  ∧  ( ( 𝐹  ∖  { 𝑟 } )  ∪  ( 𝐻  ∪  { 𝑞 } ) )  ∈  𝐼 ) )  ∧  ( 𝑖  ∈  𝒫  ( 𝐺  ∖  { 𝑞 } )  ∧  ( ( 𝐹  ∖  { 𝑟 } )  ≈  𝑖  ∧  ( 𝑖  ∪  ( 𝐻  ∪  { 𝑞 } ) )  ∈  𝐼 ) ) )  →  𝑞  ∈  𝐺 ) | 
						
							| 85 | 84 | snssd | ⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  𝐹 )  ∧  ( 𝑞  ∈  𝐺  ∧  ¬  𝑞  ∈  ( 𝐹  ∖  { 𝑟 } )  ∧  ( ( 𝐹  ∖  { 𝑟 } )  ∪  ( 𝐻  ∪  { 𝑞 } ) )  ∈  𝐼 ) )  ∧  ( 𝑖  ∈  𝒫  ( 𝐺  ∖  { 𝑞 } )  ∧  ( ( 𝐹  ∖  { 𝑟 } )  ≈  𝑖  ∧  ( 𝑖  ∪  ( 𝐻  ∪  { 𝑞 } ) )  ∈  𝐼 ) ) )  →  { 𝑞 }  ⊆  𝐺 ) | 
						
							| 86 | 83 85 | unssd | ⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  𝐹 )  ∧  ( 𝑞  ∈  𝐺  ∧  ¬  𝑞  ∈  ( 𝐹  ∖  { 𝑟 } )  ∧  ( ( 𝐹  ∖  { 𝑟 } )  ∪  ( 𝐻  ∪  { 𝑞 } ) )  ∈  𝐼 ) )  ∧  ( 𝑖  ∈  𝒫  ( 𝐺  ∖  { 𝑞 } )  ∧  ( ( 𝐹  ∖  { 𝑟 } )  ≈  𝑖  ∧  ( 𝑖  ∪  ( 𝐻  ∪  { 𝑞 } ) )  ∈  𝐼 ) ) )  →  ( 𝑖  ∪  { 𝑞 } )  ⊆  𝐺 ) | 
						
							| 87 | 80 86 | sselpwd | ⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  𝐹 )  ∧  ( 𝑞  ∈  𝐺  ∧  ¬  𝑞  ∈  ( 𝐹  ∖  { 𝑟 } )  ∧  ( ( 𝐹  ∖  { 𝑟 } )  ∪  ( 𝐻  ∪  { 𝑞 } ) )  ∈  𝐼 ) )  ∧  ( 𝑖  ∈  𝒫  ( 𝐺  ∖  { 𝑞 } )  ∧  ( ( 𝐹  ∖  { 𝑟 } )  ≈  𝑖  ∧  ( 𝑖  ∪  ( 𝐻  ∪  { 𝑞 } ) )  ∈  𝐼 ) ) )  →  ( 𝑖  ∪  { 𝑞 } )  ∈  𝒫  𝐺 ) | 
						
							| 88 |  | difsnid | ⊢ ( 𝑟  ∈  𝐹  →  ( ( 𝐹  ∖  { 𝑟 } )  ∪  { 𝑟 } )  =  𝐹 ) | 
						
							| 89 | 88 | ad3antlr | ⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  𝐹 )  ∧  ( 𝑞  ∈  𝐺  ∧  ¬  𝑞  ∈  ( 𝐹  ∖  { 𝑟 } )  ∧  ( ( 𝐹  ∖  { 𝑟 } )  ∪  ( 𝐻  ∪  { 𝑞 } ) )  ∈  𝐼 ) )  ∧  ( 𝑖  ∈  𝒫  ( 𝐺  ∖  { 𝑞 } )  ∧  ( ( 𝐹  ∖  { 𝑟 } )  ≈  𝑖  ∧  ( 𝑖  ∪  ( 𝐻  ∪  { 𝑞 } ) )  ∈  𝐼 ) ) )  →  ( ( 𝐹  ∖  { 𝑟 } )  ∪  { 𝑟 } )  =  𝐹 ) | 
						
							| 90 |  | simprrl | ⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  𝐹 )  ∧  ( 𝑞  ∈  𝐺  ∧  ¬  𝑞  ∈  ( 𝐹  ∖  { 𝑟 } )  ∧  ( ( 𝐹  ∖  { 𝑟 } )  ∪  ( 𝐻  ∪  { 𝑞 } ) )  ∈  𝐼 ) )  ∧  ( 𝑖  ∈  𝒫  ( 𝐺  ∖  { 𝑞 } )  ∧  ( ( 𝐹  ∖  { 𝑟 } )  ≈  𝑖  ∧  ( 𝑖  ∪  ( 𝐻  ∪  { 𝑞 } ) )  ∈  𝐼 ) ) )  →  ( 𝐹  ∖  { 𝑟 } )  ≈  𝑖 ) | 
						
							| 91 |  | en2sn | ⊢ ( ( 𝑟  ∈  V  ∧  𝑞  ∈  V )  →  { 𝑟 }  ≈  { 𝑞 } ) | 
						
							| 92 | 91 | el2v | ⊢ { 𝑟 }  ≈  { 𝑞 } | 
						
							| 93 | 92 | a1i | ⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  𝐹 )  ∧  ( 𝑞  ∈  𝐺  ∧  ¬  𝑞  ∈  ( 𝐹  ∖  { 𝑟 } )  ∧  ( ( 𝐹  ∖  { 𝑟 } )  ∪  ( 𝐻  ∪  { 𝑞 } ) )  ∈  𝐼 ) )  ∧  ( 𝑖  ∈  𝒫  ( 𝐺  ∖  { 𝑞 } )  ∧  ( ( 𝐹  ∖  { 𝑟 } )  ≈  𝑖  ∧  ( 𝑖  ∪  ( 𝐻  ∪  { 𝑞 } ) )  ∈  𝐼 ) ) )  →  { 𝑟 }  ≈  { 𝑞 } ) | 
						
							| 94 |  | disjdifr | ⊢ ( ( 𝐹  ∖  { 𝑟 } )  ∩  { 𝑟 } )  =  ∅ | 
						
							| 95 | 94 | a1i | ⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  𝐹 )  ∧  ( 𝑞  ∈  𝐺  ∧  ¬  𝑞  ∈  ( 𝐹  ∖  { 𝑟 } )  ∧  ( ( 𝐹  ∖  { 𝑟 } )  ∪  ( 𝐻  ∪  { 𝑞 } ) )  ∈  𝐼 ) )  ∧  ( 𝑖  ∈  𝒫  ( 𝐺  ∖  { 𝑞 } )  ∧  ( ( 𝐹  ∖  { 𝑟 } )  ≈  𝑖  ∧  ( 𝑖  ∪  ( 𝐻  ∪  { 𝑞 } ) )  ∈  𝐼 ) ) )  →  ( ( 𝐹  ∖  { 𝑟 } )  ∩  { 𝑟 } )  =  ∅ ) | 
						
							| 96 |  | ssdifin0 | ⊢ ( 𝑖  ⊆  ( 𝐺  ∖  { 𝑞 } )  →  ( 𝑖  ∩  { 𝑞 } )  =  ∅ ) | 
						
							| 97 | 82 96 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  𝐹 )  ∧  ( 𝑞  ∈  𝐺  ∧  ¬  𝑞  ∈  ( 𝐹  ∖  { 𝑟 } )  ∧  ( ( 𝐹  ∖  { 𝑟 } )  ∪  ( 𝐻  ∪  { 𝑞 } ) )  ∈  𝐼 ) )  ∧  ( 𝑖  ∈  𝒫  ( 𝐺  ∖  { 𝑞 } )  ∧  ( ( 𝐹  ∖  { 𝑟 } )  ≈  𝑖  ∧  ( 𝑖  ∪  ( 𝐻  ∪  { 𝑞 } ) )  ∈  𝐼 ) ) )  →  ( 𝑖  ∩  { 𝑞 } )  =  ∅ ) | 
						
							| 98 |  | unen | ⊢ ( ( ( ( 𝐹  ∖  { 𝑟 } )  ≈  𝑖  ∧  { 𝑟 }  ≈  { 𝑞 } )  ∧  ( ( ( 𝐹  ∖  { 𝑟 } )  ∩  { 𝑟 } )  =  ∅  ∧  ( 𝑖  ∩  { 𝑞 } )  =  ∅ ) )  →  ( ( 𝐹  ∖  { 𝑟 } )  ∪  { 𝑟 } )  ≈  ( 𝑖  ∪  { 𝑞 } ) ) | 
						
							| 99 | 90 93 95 97 98 | syl22anc | ⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  𝐹 )  ∧  ( 𝑞  ∈  𝐺  ∧  ¬  𝑞  ∈  ( 𝐹  ∖  { 𝑟 } )  ∧  ( ( 𝐹  ∖  { 𝑟 } )  ∪  ( 𝐻  ∪  { 𝑞 } ) )  ∈  𝐼 ) )  ∧  ( 𝑖  ∈  𝒫  ( 𝐺  ∖  { 𝑞 } )  ∧  ( ( 𝐹  ∖  { 𝑟 } )  ≈  𝑖  ∧  ( 𝑖  ∪  ( 𝐻  ∪  { 𝑞 } ) )  ∈  𝐼 ) ) )  →  ( ( 𝐹  ∖  { 𝑟 } )  ∪  { 𝑟 } )  ≈  ( 𝑖  ∪  { 𝑞 } ) ) | 
						
							| 100 | 89 99 | eqbrtrrd | ⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  𝐹 )  ∧  ( 𝑞  ∈  𝐺  ∧  ¬  𝑞  ∈  ( 𝐹  ∖  { 𝑟 } )  ∧  ( ( 𝐹  ∖  { 𝑟 } )  ∪  ( 𝐻  ∪  { 𝑞 } ) )  ∈  𝐼 ) )  ∧  ( 𝑖  ∈  𝒫  ( 𝐺  ∖  { 𝑞 } )  ∧  ( ( 𝐹  ∖  { 𝑟 } )  ≈  𝑖  ∧  ( 𝑖  ∪  ( 𝐻  ∪  { 𝑞 } ) )  ∈  𝐼 ) ) )  →  𝐹  ≈  ( 𝑖  ∪  { 𝑞 } ) ) | 
						
							| 101 |  | unass | ⊢ ( ( 𝑖  ∪  { 𝑞 } )  ∪  𝐻 )  =  ( 𝑖  ∪  ( { 𝑞 }  ∪  𝐻 ) ) | 
						
							| 102 |  | uncom | ⊢ ( { 𝑞 }  ∪  𝐻 )  =  ( 𝐻  ∪  { 𝑞 } ) | 
						
							| 103 | 102 | uneq2i | ⊢ ( 𝑖  ∪  ( { 𝑞 }  ∪  𝐻 ) )  =  ( 𝑖  ∪  ( 𝐻  ∪  { 𝑞 } ) ) | 
						
							| 104 | 101 103 | eqtr2i | ⊢ ( 𝑖  ∪  ( 𝐻  ∪  { 𝑞 } ) )  =  ( ( 𝑖  ∪  { 𝑞 } )  ∪  𝐻 ) | 
						
							| 105 |  | simprrr | ⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  𝐹 )  ∧  ( 𝑞  ∈  𝐺  ∧  ¬  𝑞  ∈  ( 𝐹  ∖  { 𝑟 } )  ∧  ( ( 𝐹  ∖  { 𝑟 } )  ∪  ( 𝐻  ∪  { 𝑞 } ) )  ∈  𝐼 ) )  ∧  ( 𝑖  ∈  𝒫  ( 𝐺  ∖  { 𝑞 } )  ∧  ( ( 𝐹  ∖  { 𝑟 } )  ≈  𝑖  ∧  ( 𝑖  ∪  ( 𝐻  ∪  { 𝑞 } ) )  ∈  𝐼 ) ) )  →  ( 𝑖  ∪  ( 𝐻  ∪  { 𝑞 } ) )  ∈  𝐼 ) | 
						
							| 106 | 104 105 | eqeltrrid | ⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  𝐹 )  ∧  ( 𝑞  ∈  𝐺  ∧  ¬  𝑞  ∈  ( 𝐹  ∖  { 𝑟 } )  ∧  ( ( 𝐹  ∖  { 𝑟 } )  ∪  ( 𝐻  ∪  { 𝑞 } ) )  ∈  𝐼 ) )  ∧  ( 𝑖  ∈  𝒫  ( 𝐺  ∖  { 𝑞 } )  ∧  ( ( 𝐹  ∖  { 𝑟 } )  ≈  𝑖  ∧  ( 𝑖  ∪  ( 𝐻  ∪  { 𝑞 } ) )  ∈  𝐼 ) ) )  →  ( ( 𝑖  ∪  { 𝑞 } )  ∪  𝐻 )  ∈  𝐼 ) | 
						
							| 107 |  | breq2 | ⊢ ( 𝑗  =  ( 𝑖  ∪  { 𝑞 } )  →  ( 𝐹  ≈  𝑗  ↔  𝐹  ≈  ( 𝑖  ∪  { 𝑞 } ) ) ) | 
						
							| 108 |  | uneq1 | ⊢ ( 𝑗  =  ( 𝑖  ∪  { 𝑞 } )  →  ( 𝑗  ∪  𝐻 )  =  ( ( 𝑖  ∪  { 𝑞 } )  ∪  𝐻 ) ) | 
						
							| 109 | 108 | eleq1d | ⊢ ( 𝑗  =  ( 𝑖  ∪  { 𝑞 } )  →  ( ( 𝑗  ∪  𝐻 )  ∈  𝐼  ↔  ( ( 𝑖  ∪  { 𝑞 } )  ∪  𝐻 )  ∈  𝐼 ) ) | 
						
							| 110 | 107 109 | anbi12d | ⊢ ( 𝑗  =  ( 𝑖  ∪  { 𝑞 } )  →  ( ( 𝐹  ≈  𝑗  ∧  ( 𝑗  ∪  𝐻 )  ∈  𝐼 )  ↔  ( 𝐹  ≈  ( 𝑖  ∪  { 𝑞 } )  ∧  ( ( 𝑖  ∪  { 𝑞 } )  ∪  𝐻 )  ∈  𝐼 ) ) ) | 
						
							| 111 | 110 | rspcev | ⊢ ( ( ( 𝑖  ∪  { 𝑞 } )  ∈  𝒫  𝐺  ∧  ( 𝐹  ≈  ( 𝑖  ∪  { 𝑞 } )  ∧  ( ( 𝑖  ∪  { 𝑞 } )  ∪  𝐻 )  ∈  𝐼 ) )  →  ∃ 𝑗  ∈  𝒫  𝐺 ( 𝐹  ≈  𝑗  ∧  ( 𝑗  ∪  𝐻 )  ∈  𝐼 ) ) | 
						
							| 112 | 87 100 106 111 | syl12anc | ⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  𝐹 )  ∧  ( 𝑞  ∈  𝐺  ∧  ¬  𝑞  ∈  ( 𝐹  ∖  { 𝑟 } )  ∧  ( ( 𝐹  ∖  { 𝑟 } )  ∪  ( 𝐻  ∪  { 𝑞 } ) )  ∈  𝐼 ) )  ∧  ( 𝑖  ∈  𝒫  ( 𝐺  ∖  { 𝑞 } )  ∧  ( ( 𝐹  ∖  { 𝑟 } )  ≈  𝑖  ∧  ( 𝑖  ∪  ( 𝐻  ∪  { 𝑞 } ) )  ∈  𝐼 ) ) )  →  ∃ 𝑗  ∈  𝒫  𝐺 ( 𝐹  ≈  𝑗  ∧  ( 𝑗  ∪  𝐻 )  ∈  𝐼 ) ) | 
						
							| 113 | 76 112 | rexlimddv | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  𝐹 )  ∧  ( 𝑞  ∈  𝐺  ∧  ¬  𝑞  ∈  ( 𝐹  ∖  { 𝑟 } )  ∧  ( ( 𝐹  ∖  { 𝑟 } )  ∪  ( 𝐻  ∪  { 𝑞 } ) )  ∈  𝐼 ) )  →  ∃ 𝑗  ∈  𝒫  𝐺 ( 𝐹  ≈  𝑗  ∧  ( 𝑗  ∪  𝐻 )  ∈  𝐼 ) ) | 
						
							| 114 | 31 113 | sylan2br | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  𝐹 )  ∧  ( 𝑞  ∈  𝐺  ∧  ( ¬  𝑞  ∈  ( 𝐹  ∖  { 𝑟 } )  ∧  ( ( 𝐹  ∖  { 𝑟 } )  ∪  ( 𝐻  ∪  { 𝑞 } ) )  ∈  𝐼 ) ) )  →  ∃ 𝑗  ∈  𝒫  𝐺 ( 𝐹  ≈  𝑗  ∧  ( 𝑗  ∪  𝐻 )  ∈  𝐼 ) ) | 
						
							| 115 | 30 114 | rexlimddv | ⊢ ( ( 𝜑  ∧  𝑟  ∈  𝐹 )  →  ∃ 𝑗  ∈  𝒫  𝐺 ( 𝐹  ≈  𝑗  ∧  ( 𝑗  ∪  𝐻 )  ∈  𝐼 ) ) | 
						
							| 116 | 115 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝐹  ≠  ∅ )  ∧  𝑟  ∈  𝐹 )  →  ∃ 𝑗  ∈  𝒫  𝐺 ( 𝐹  ≈  𝑗  ∧  ( 𝑗  ∪  𝐻 )  ∈  𝐼 ) ) | 
						
							| 117 | 22 116 | exlimddv | ⊢ ( ( 𝜑  ∧  𝐹  ≠  ∅ )  →  ∃ 𝑗  ∈  𝒫  𝐺 ( 𝐹  ≈  𝑗  ∧  ( 𝑗  ∪  𝐻 )  ∈  𝐼 ) ) | 
						
							| 118 | 19 117 | pm2.61dane | ⊢ ( 𝜑  →  ∃ 𝑗  ∈  𝒫  𝐺 ( 𝐹  ≈  𝑗  ∧  ( 𝑗  ∪  𝐻 )  ∈  𝐼 ) ) |