Step |
Hyp |
Ref |
Expression |
1 |
|
mreexexlem2d.1 |
⊢ ( 𝜑 → 𝐴 ∈ ( Moore ‘ 𝑋 ) ) |
2 |
|
mreexexlem2d.2 |
⊢ 𝑁 = ( mrCls ‘ 𝐴 ) |
3 |
|
mreexexlem2d.3 |
⊢ 𝐼 = ( mrInd ‘ 𝐴 ) |
4 |
|
mreexexlem2d.4 |
⊢ ( 𝜑 → ∀ 𝑠 ∈ 𝒫 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ ( ( 𝑁 ‘ ( 𝑠 ∪ { 𝑦 } ) ) ∖ ( 𝑁 ‘ 𝑠 ) ) 𝑦 ∈ ( 𝑁 ‘ ( 𝑠 ∪ { 𝑧 } ) ) ) |
5 |
|
mreexexlem2d.5 |
⊢ ( 𝜑 → 𝐹 ⊆ ( 𝑋 ∖ 𝐻 ) ) |
6 |
|
mreexexlem2d.6 |
⊢ ( 𝜑 → 𝐺 ⊆ ( 𝑋 ∖ 𝐻 ) ) |
7 |
|
mreexexlem2d.7 |
⊢ ( 𝜑 → 𝐹 ⊆ ( 𝑁 ‘ ( 𝐺 ∪ 𝐻 ) ) ) |
8 |
|
mreexexlem2d.8 |
⊢ ( 𝜑 → ( 𝐹 ∪ 𝐻 ) ∈ 𝐼 ) |
9 |
|
mreexexlem4d.9 |
⊢ ( 𝜑 → 𝐿 ∈ ω ) |
10 |
|
mreexexlem4d.A |
⊢ ( 𝜑 → ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝐿 ∨ 𝑔 ≈ 𝐿 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑗 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑗 ∧ ( 𝑗 ∪ ℎ ) ∈ 𝐼 ) ) ) |
11 |
|
mreexexlem4d.B |
⊢ ( 𝜑 → ( 𝐹 ≈ suc 𝐿 ∨ 𝐺 ≈ suc 𝐿 ) ) |
12 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 = ∅ ) → 𝐴 ∈ ( Moore ‘ 𝑋 ) ) |
13 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 = ∅ ) → ∀ 𝑠 ∈ 𝒫 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ ( ( 𝑁 ‘ ( 𝑠 ∪ { 𝑦 } ) ) ∖ ( 𝑁 ‘ 𝑠 ) ) 𝑦 ∈ ( 𝑁 ‘ ( 𝑠 ∪ { 𝑧 } ) ) ) |
14 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 = ∅ ) → 𝐹 ⊆ ( 𝑋 ∖ 𝐻 ) ) |
15 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 = ∅ ) → 𝐺 ⊆ ( 𝑋 ∖ 𝐻 ) ) |
16 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 = ∅ ) → 𝐹 ⊆ ( 𝑁 ‘ ( 𝐺 ∪ 𝐻 ) ) ) |
17 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 = ∅ ) → ( 𝐹 ∪ 𝐻 ) ∈ 𝐼 ) |
18 |
|
animorrl |
⊢ ( ( 𝜑 ∧ 𝐹 = ∅ ) → ( 𝐹 = ∅ ∨ 𝐺 = ∅ ) ) |
19 |
12 2 3 13 14 15 16 17 18
|
mreexexlem3d |
⊢ ( ( 𝜑 ∧ 𝐹 = ∅ ) → ∃ 𝑗 ∈ 𝒫 𝐺 ( 𝐹 ≈ 𝑗 ∧ ( 𝑗 ∪ 𝐻 ) ∈ 𝐼 ) ) |
20 |
|
n0 |
⊢ ( 𝐹 ≠ ∅ ↔ ∃ 𝑟 𝑟 ∈ 𝐹 ) |
21 |
20
|
biimpi |
⊢ ( 𝐹 ≠ ∅ → ∃ 𝑟 𝑟 ∈ 𝐹 ) |
22 |
21
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐹 ≠ ∅ ) → ∃ 𝑟 𝑟 ∈ 𝐹 ) |
23 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) → 𝐴 ∈ ( Moore ‘ 𝑋 ) ) |
24 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) → ∀ 𝑠 ∈ 𝒫 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ ( ( 𝑁 ‘ ( 𝑠 ∪ { 𝑦 } ) ) ∖ ( 𝑁 ‘ 𝑠 ) ) 𝑦 ∈ ( 𝑁 ‘ ( 𝑠 ∪ { 𝑧 } ) ) ) |
25 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) → 𝐹 ⊆ ( 𝑋 ∖ 𝐻 ) ) |
26 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) → 𝐺 ⊆ ( 𝑋 ∖ 𝐻 ) ) |
27 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) → 𝐹 ⊆ ( 𝑁 ‘ ( 𝐺 ∪ 𝐻 ) ) ) |
28 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) → ( 𝐹 ∪ 𝐻 ) ∈ 𝐼 ) |
29 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) → 𝑟 ∈ 𝐹 ) |
30 |
23 2 3 24 25 26 27 28 29
|
mreexexlem2d |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) → ∃ 𝑞 ∈ 𝐺 ( ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) |
31 |
|
3anass |
⊢ ( ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ↔ ( 𝑞 ∈ 𝐺 ∧ ( ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ) |
32 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) → 𝐴 ∈ ( Moore ‘ 𝑋 ) ) |
33 |
32
|
elfvexd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) → 𝑋 ∈ V ) |
34 |
|
simpr2 |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) → ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ) |
35 |
|
difsnb |
⊢ ( ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ↔ ( ( 𝐹 ∖ { 𝑟 } ) ∖ { 𝑞 } ) = ( 𝐹 ∖ { 𝑟 } ) ) |
36 |
34 35
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) → ( ( 𝐹 ∖ { 𝑟 } ) ∖ { 𝑞 } ) = ( 𝐹 ∖ { 𝑟 } ) ) |
37 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) → 𝐹 ⊆ ( 𝑋 ∖ 𝐻 ) ) |
38 |
37
|
ssdifssd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) → ( 𝐹 ∖ { 𝑟 } ) ⊆ ( 𝑋 ∖ 𝐻 ) ) |
39 |
38
|
ssdifd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) → ( ( 𝐹 ∖ { 𝑟 } ) ∖ { 𝑞 } ) ⊆ ( ( 𝑋 ∖ 𝐻 ) ∖ { 𝑞 } ) ) |
40 |
36 39
|
eqsstrrd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) → ( 𝐹 ∖ { 𝑟 } ) ⊆ ( ( 𝑋 ∖ 𝐻 ) ∖ { 𝑞 } ) ) |
41 |
|
difun1 |
⊢ ( 𝑋 ∖ ( 𝐻 ∪ { 𝑞 } ) ) = ( ( 𝑋 ∖ 𝐻 ) ∖ { 𝑞 } ) |
42 |
40 41
|
sseqtrrdi |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) → ( 𝐹 ∖ { 𝑟 } ) ⊆ ( 𝑋 ∖ ( 𝐻 ∪ { 𝑞 } ) ) ) |
43 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) → 𝐺 ⊆ ( 𝑋 ∖ 𝐻 ) ) |
44 |
43
|
ssdifd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) → ( 𝐺 ∖ { 𝑞 } ) ⊆ ( ( 𝑋 ∖ 𝐻 ) ∖ { 𝑞 } ) ) |
45 |
44 41
|
sseqtrrdi |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) → ( 𝐺 ∖ { 𝑞 } ) ⊆ ( 𝑋 ∖ ( 𝐻 ∪ { 𝑞 } ) ) ) |
46 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) → 𝐹 ⊆ ( 𝑁 ‘ ( 𝐺 ∪ 𝐻 ) ) ) |
47 |
|
simpr1 |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) → 𝑞 ∈ 𝐺 ) |
48 |
|
uncom |
⊢ ( 𝐻 ∪ { 𝑞 } ) = ( { 𝑞 } ∪ 𝐻 ) |
49 |
48
|
uneq2i |
⊢ ( ( 𝐺 ∖ { 𝑞 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) = ( ( 𝐺 ∖ { 𝑞 } ) ∪ ( { 𝑞 } ∪ 𝐻 ) ) |
50 |
|
unass |
⊢ ( ( ( 𝐺 ∖ { 𝑞 } ) ∪ { 𝑞 } ) ∪ 𝐻 ) = ( ( 𝐺 ∖ { 𝑞 } ) ∪ ( { 𝑞 } ∪ 𝐻 ) ) |
51 |
|
difsnid |
⊢ ( 𝑞 ∈ 𝐺 → ( ( 𝐺 ∖ { 𝑞 } ) ∪ { 𝑞 } ) = 𝐺 ) |
52 |
51
|
uneq1d |
⊢ ( 𝑞 ∈ 𝐺 → ( ( ( 𝐺 ∖ { 𝑞 } ) ∪ { 𝑞 } ) ∪ 𝐻 ) = ( 𝐺 ∪ 𝐻 ) ) |
53 |
50 52
|
eqtr3id |
⊢ ( 𝑞 ∈ 𝐺 → ( ( 𝐺 ∖ { 𝑞 } ) ∪ ( { 𝑞 } ∪ 𝐻 ) ) = ( 𝐺 ∪ 𝐻 ) ) |
54 |
49 53
|
eqtrid |
⊢ ( 𝑞 ∈ 𝐺 → ( ( 𝐺 ∖ { 𝑞 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) = ( 𝐺 ∪ 𝐻 ) ) |
55 |
47 54
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) → ( ( 𝐺 ∖ { 𝑞 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) = ( 𝐺 ∪ 𝐻 ) ) |
56 |
55
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) → ( 𝑁 ‘ ( ( 𝐺 ∖ { 𝑞 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ) = ( 𝑁 ‘ ( 𝐺 ∪ 𝐻 ) ) ) |
57 |
46 56
|
sseqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) → 𝐹 ⊆ ( 𝑁 ‘ ( ( 𝐺 ∖ { 𝑞 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ) ) |
58 |
57
|
ssdifssd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) → ( 𝐹 ∖ { 𝑟 } ) ⊆ ( 𝑁 ‘ ( ( 𝐺 ∖ { 𝑞 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ) ) |
59 |
|
simpr3 |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) → ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) |
60 |
11
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) → ( 𝐹 ≈ suc 𝐿 ∨ 𝐺 ≈ suc 𝐿 ) ) |
61 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) → 𝐿 ∈ ω ) |
62 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) → 𝑟 ∈ 𝐹 ) |
63 |
|
3anan12 |
⊢ ( ( 𝐿 ∈ ω ∧ 𝐹 ≈ suc 𝐿 ∧ 𝑟 ∈ 𝐹 ) ↔ ( 𝐹 ≈ suc 𝐿 ∧ ( 𝐿 ∈ ω ∧ 𝑟 ∈ 𝐹 ) ) ) |
64 |
|
dif1en |
⊢ ( ( 𝐿 ∈ ω ∧ 𝐹 ≈ suc 𝐿 ∧ 𝑟 ∈ 𝐹 ) → ( 𝐹 ∖ { 𝑟 } ) ≈ 𝐿 ) |
65 |
63 64
|
sylbir |
⊢ ( ( 𝐹 ≈ suc 𝐿 ∧ ( 𝐿 ∈ ω ∧ 𝑟 ∈ 𝐹 ) ) → ( 𝐹 ∖ { 𝑟 } ) ≈ 𝐿 ) |
66 |
65
|
expcom |
⊢ ( ( 𝐿 ∈ ω ∧ 𝑟 ∈ 𝐹 ) → ( 𝐹 ≈ suc 𝐿 → ( 𝐹 ∖ { 𝑟 } ) ≈ 𝐿 ) ) |
67 |
61 62 66
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) → ( 𝐹 ≈ suc 𝐿 → ( 𝐹 ∖ { 𝑟 } ) ≈ 𝐿 ) ) |
68 |
|
3anan12 |
⊢ ( ( 𝐿 ∈ ω ∧ 𝐺 ≈ suc 𝐿 ∧ 𝑞 ∈ 𝐺 ) ↔ ( 𝐺 ≈ suc 𝐿 ∧ ( 𝐿 ∈ ω ∧ 𝑞 ∈ 𝐺 ) ) ) |
69 |
|
dif1en |
⊢ ( ( 𝐿 ∈ ω ∧ 𝐺 ≈ suc 𝐿 ∧ 𝑞 ∈ 𝐺 ) → ( 𝐺 ∖ { 𝑞 } ) ≈ 𝐿 ) |
70 |
68 69
|
sylbir |
⊢ ( ( 𝐺 ≈ suc 𝐿 ∧ ( 𝐿 ∈ ω ∧ 𝑞 ∈ 𝐺 ) ) → ( 𝐺 ∖ { 𝑞 } ) ≈ 𝐿 ) |
71 |
70
|
expcom |
⊢ ( ( 𝐿 ∈ ω ∧ 𝑞 ∈ 𝐺 ) → ( 𝐺 ≈ suc 𝐿 → ( 𝐺 ∖ { 𝑞 } ) ≈ 𝐿 ) ) |
72 |
61 47 71
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) → ( 𝐺 ≈ suc 𝐿 → ( 𝐺 ∖ { 𝑞 } ) ≈ 𝐿 ) ) |
73 |
67 72
|
orim12d |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) → ( ( 𝐹 ≈ suc 𝐿 ∨ 𝐺 ≈ suc 𝐿 ) → ( ( 𝐹 ∖ { 𝑟 } ) ≈ 𝐿 ∨ ( 𝐺 ∖ { 𝑞 } ) ≈ 𝐿 ) ) ) |
74 |
60 73
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) → ( ( 𝐹 ∖ { 𝑟 } ) ≈ 𝐿 ∨ ( 𝐺 ∖ { 𝑞 } ) ≈ 𝐿 ) ) |
75 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) → ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝐿 ∨ 𝑔 ≈ 𝐿 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑗 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑗 ∧ ( 𝑗 ∪ ℎ ) ∈ 𝐼 ) ) ) |
76 |
33 42 45 58 59 74 75
|
mreexexlemd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) → ∃ 𝑖 ∈ 𝒫 ( 𝐺 ∖ { 𝑞 } ) ( ( 𝐹 ∖ { 𝑟 } ) ≈ 𝑖 ∧ ( 𝑖 ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) |
77 |
33
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ∧ ( 𝑖 ∈ 𝒫 ( 𝐺 ∖ { 𝑞 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ≈ 𝑖 ∧ ( 𝑖 ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ) → 𝑋 ∈ V ) |
78 |
6
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ∧ ( 𝑖 ∈ 𝒫 ( 𝐺 ∖ { 𝑞 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ≈ 𝑖 ∧ ( 𝑖 ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ) → 𝐺 ⊆ ( 𝑋 ∖ 𝐻 ) ) |
79 |
78
|
difss2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ∧ ( 𝑖 ∈ 𝒫 ( 𝐺 ∖ { 𝑞 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ≈ 𝑖 ∧ ( 𝑖 ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ) → 𝐺 ⊆ 𝑋 ) |
80 |
77 79
|
ssexd |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ∧ ( 𝑖 ∈ 𝒫 ( 𝐺 ∖ { 𝑞 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ≈ 𝑖 ∧ ( 𝑖 ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ) → 𝐺 ∈ V ) |
81 |
|
simprl |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ∧ ( 𝑖 ∈ 𝒫 ( 𝐺 ∖ { 𝑞 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ≈ 𝑖 ∧ ( 𝑖 ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ) → 𝑖 ∈ 𝒫 ( 𝐺 ∖ { 𝑞 } ) ) |
82 |
81
|
elpwid |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ∧ ( 𝑖 ∈ 𝒫 ( 𝐺 ∖ { 𝑞 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ≈ 𝑖 ∧ ( 𝑖 ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ) → 𝑖 ⊆ ( 𝐺 ∖ { 𝑞 } ) ) |
83 |
82
|
difss2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ∧ ( 𝑖 ∈ 𝒫 ( 𝐺 ∖ { 𝑞 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ≈ 𝑖 ∧ ( 𝑖 ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ) → 𝑖 ⊆ 𝐺 ) |
84 |
|
simplr1 |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ∧ ( 𝑖 ∈ 𝒫 ( 𝐺 ∖ { 𝑞 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ≈ 𝑖 ∧ ( 𝑖 ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ) → 𝑞 ∈ 𝐺 ) |
85 |
84
|
snssd |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ∧ ( 𝑖 ∈ 𝒫 ( 𝐺 ∖ { 𝑞 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ≈ 𝑖 ∧ ( 𝑖 ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ) → { 𝑞 } ⊆ 𝐺 ) |
86 |
83 85
|
unssd |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ∧ ( 𝑖 ∈ 𝒫 ( 𝐺 ∖ { 𝑞 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ≈ 𝑖 ∧ ( 𝑖 ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ) → ( 𝑖 ∪ { 𝑞 } ) ⊆ 𝐺 ) |
87 |
80 86
|
sselpwd |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ∧ ( 𝑖 ∈ 𝒫 ( 𝐺 ∖ { 𝑞 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ≈ 𝑖 ∧ ( 𝑖 ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ) → ( 𝑖 ∪ { 𝑞 } ) ∈ 𝒫 𝐺 ) |
88 |
|
difsnid |
⊢ ( 𝑟 ∈ 𝐹 → ( ( 𝐹 ∖ { 𝑟 } ) ∪ { 𝑟 } ) = 𝐹 ) |
89 |
88
|
ad3antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ∧ ( 𝑖 ∈ 𝒫 ( 𝐺 ∖ { 𝑞 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ≈ 𝑖 ∧ ( 𝑖 ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ) → ( ( 𝐹 ∖ { 𝑟 } ) ∪ { 𝑟 } ) = 𝐹 ) |
90 |
|
simprrl |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ∧ ( 𝑖 ∈ 𝒫 ( 𝐺 ∖ { 𝑞 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ≈ 𝑖 ∧ ( 𝑖 ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ) → ( 𝐹 ∖ { 𝑟 } ) ≈ 𝑖 ) |
91 |
|
en2sn |
⊢ ( ( 𝑟 ∈ V ∧ 𝑞 ∈ V ) → { 𝑟 } ≈ { 𝑞 } ) |
92 |
91
|
el2v |
⊢ { 𝑟 } ≈ { 𝑞 } |
93 |
92
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ∧ ( 𝑖 ∈ 𝒫 ( 𝐺 ∖ { 𝑞 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ≈ 𝑖 ∧ ( 𝑖 ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ) → { 𝑟 } ≈ { 𝑞 } ) |
94 |
|
disjdifr |
⊢ ( ( 𝐹 ∖ { 𝑟 } ) ∩ { 𝑟 } ) = ∅ |
95 |
94
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ∧ ( 𝑖 ∈ 𝒫 ( 𝐺 ∖ { 𝑞 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ≈ 𝑖 ∧ ( 𝑖 ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ) → ( ( 𝐹 ∖ { 𝑟 } ) ∩ { 𝑟 } ) = ∅ ) |
96 |
|
ssdifin0 |
⊢ ( 𝑖 ⊆ ( 𝐺 ∖ { 𝑞 } ) → ( 𝑖 ∩ { 𝑞 } ) = ∅ ) |
97 |
82 96
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ∧ ( 𝑖 ∈ 𝒫 ( 𝐺 ∖ { 𝑞 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ≈ 𝑖 ∧ ( 𝑖 ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ) → ( 𝑖 ∩ { 𝑞 } ) = ∅ ) |
98 |
|
unen |
⊢ ( ( ( ( 𝐹 ∖ { 𝑟 } ) ≈ 𝑖 ∧ { 𝑟 } ≈ { 𝑞 } ) ∧ ( ( ( 𝐹 ∖ { 𝑟 } ) ∩ { 𝑟 } ) = ∅ ∧ ( 𝑖 ∩ { 𝑞 } ) = ∅ ) ) → ( ( 𝐹 ∖ { 𝑟 } ) ∪ { 𝑟 } ) ≈ ( 𝑖 ∪ { 𝑞 } ) ) |
99 |
90 93 95 97 98
|
syl22anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ∧ ( 𝑖 ∈ 𝒫 ( 𝐺 ∖ { 𝑞 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ≈ 𝑖 ∧ ( 𝑖 ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ) → ( ( 𝐹 ∖ { 𝑟 } ) ∪ { 𝑟 } ) ≈ ( 𝑖 ∪ { 𝑞 } ) ) |
100 |
89 99
|
eqbrtrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ∧ ( 𝑖 ∈ 𝒫 ( 𝐺 ∖ { 𝑞 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ≈ 𝑖 ∧ ( 𝑖 ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ) → 𝐹 ≈ ( 𝑖 ∪ { 𝑞 } ) ) |
101 |
|
unass |
⊢ ( ( 𝑖 ∪ { 𝑞 } ) ∪ 𝐻 ) = ( 𝑖 ∪ ( { 𝑞 } ∪ 𝐻 ) ) |
102 |
|
uncom |
⊢ ( { 𝑞 } ∪ 𝐻 ) = ( 𝐻 ∪ { 𝑞 } ) |
103 |
102
|
uneq2i |
⊢ ( 𝑖 ∪ ( { 𝑞 } ∪ 𝐻 ) ) = ( 𝑖 ∪ ( 𝐻 ∪ { 𝑞 } ) ) |
104 |
101 103
|
eqtr2i |
⊢ ( 𝑖 ∪ ( 𝐻 ∪ { 𝑞 } ) ) = ( ( 𝑖 ∪ { 𝑞 } ) ∪ 𝐻 ) |
105 |
|
simprrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ∧ ( 𝑖 ∈ 𝒫 ( 𝐺 ∖ { 𝑞 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ≈ 𝑖 ∧ ( 𝑖 ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ) → ( 𝑖 ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) |
106 |
104 105
|
eqeltrrid |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ∧ ( 𝑖 ∈ 𝒫 ( 𝐺 ∖ { 𝑞 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ≈ 𝑖 ∧ ( 𝑖 ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ) → ( ( 𝑖 ∪ { 𝑞 } ) ∪ 𝐻 ) ∈ 𝐼 ) |
107 |
|
breq2 |
⊢ ( 𝑗 = ( 𝑖 ∪ { 𝑞 } ) → ( 𝐹 ≈ 𝑗 ↔ 𝐹 ≈ ( 𝑖 ∪ { 𝑞 } ) ) ) |
108 |
|
uneq1 |
⊢ ( 𝑗 = ( 𝑖 ∪ { 𝑞 } ) → ( 𝑗 ∪ 𝐻 ) = ( ( 𝑖 ∪ { 𝑞 } ) ∪ 𝐻 ) ) |
109 |
108
|
eleq1d |
⊢ ( 𝑗 = ( 𝑖 ∪ { 𝑞 } ) → ( ( 𝑗 ∪ 𝐻 ) ∈ 𝐼 ↔ ( ( 𝑖 ∪ { 𝑞 } ) ∪ 𝐻 ) ∈ 𝐼 ) ) |
110 |
107 109
|
anbi12d |
⊢ ( 𝑗 = ( 𝑖 ∪ { 𝑞 } ) → ( ( 𝐹 ≈ 𝑗 ∧ ( 𝑗 ∪ 𝐻 ) ∈ 𝐼 ) ↔ ( 𝐹 ≈ ( 𝑖 ∪ { 𝑞 } ) ∧ ( ( 𝑖 ∪ { 𝑞 } ) ∪ 𝐻 ) ∈ 𝐼 ) ) ) |
111 |
110
|
rspcev |
⊢ ( ( ( 𝑖 ∪ { 𝑞 } ) ∈ 𝒫 𝐺 ∧ ( 𝐹 ≈ ( 𝑖 ∪ { 𝑞 } ) ∧ ( ( 𝑖 ∪ { 𝑞 } ) ∪ 𝐻 ) ∈ 𝐼 ) ) → ∃ 𝑗 ∈ 𝒫 𝐺 ( 𝐹 ≈ 𝑗 ∧ ( 𝑗 ∪ 𝐻 ) ∈ 𝐼 ) ) |
112 |
87 100 106 111
|
syl12anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ∧ ( 𝑖 ∈ 𝒫 ( 𝐺 ∖ { 𝑞 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ≈ 𝑖 ∧ ( 𝑖 ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ) → ∃ 𝑗 ∈ 𝒫 𝐺 ( 𝐹 ≈ 𝑗 ∧ ( 𝑗 ∪ 𝐻 ) ∈ 𝐼 ) ) |
113 |
76 112
|
rexlimddv |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) → ∃ 𝑗 ∈ 𝒫 𝐺 ( 𝐹 ≈ 𝑗 ∧ ( 𝑗 ∪ 𝐻 ) ∈ 𝐼 ) ) |
114 |
31 113
|
sylan2br |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) ∧ ( 𝑞 ∈ 𝐺 ∧ ( ¬ 𝑞 ∈ ( 𝐹 ∖ { 𝑟 } ) ∧ ( ( 𝐹 ∖ { 𝑟 } ) ∪ ( 𝐻 ∪ { 𝑞 } ) ) ∈ 𝐼 ) ) ) → ∃ 𝑗 ∈ 𝒫 𝐺 ( 𝐹 ≈ 𝑗 ∧ ( 𝑗 ∪ 𝐻 ) ∈ 𝐼 ) ) |
115 |
30 114
|
rexlimddv |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝐹 ) → ∃ 𝑗 ∈ 𝒫 𝐺 ( 𝐹 ≈ 𝑗 ∧ ( 𝑗 ∪ 𝐻 ) ∈ 𝐼 ) ) |
116 |
115
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ≠ ∅ ) ∧ 𝑟 ∈ 𝐹 ) → ∃ 𝑗 ∈ 𝒫 𝐺 ( 𝐹 ≈ 𝑗 ∧ ( 𝑗 ∪ 𝐻 ) ∈ 𝐼 ) ) |
117 |
22 116
|
exlimddv |
⊢ ( ( 𝜑 ∧ 𝐹 ≠ ∅ ) → ∃ 𝑗 ∈ 𝒫 𝐺 ( 𝐹 ≈ 𝑗 ∧ ( 𝑗 ∪ 𝐻 ) ∈ 𝐼 ) ) |
118 |
19 117
|
pm2.61dane |
⊢ ( 𝜑 → ∃ 𝑗 ∈ 𝒫 𝐺 ( 𝐹 ≈ 𝑗 ∧ ( 𝑗 ∪ 𝐻 ) ∈ 𝐼 ) ) |