Metamath Proof Explorer


Theorem mreexexlemd

Description: This lemma is used to generate substitution instances of the induction hypothesis in mreexexd . (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses mreexexlemd.1 ( 𝜑𝑋𝐽 )
mreexexlemd.2 ( 𝜑𝐹 ⊆ ( 𝑋𝐻 ) )
mreexexlemd.3 ( 𝜑𝐺 ⊆ ( 𝑋𝐻 ) )
mreexexlemd.4 ( 𝜑𝐹 ⊆ ( 𝑁 ‘ ( 𝐺𝐻 ) ) )
mreexexlemd.5 ( 𝜑 → ( 𝐹𝐻 ) ∈ 𝐼 )
mreexexlemd.6 ( 𝜑 → ( 𝐹𝐾𝐺𝐾 ) )
mreexexlemd.7 ( 𝜑 → ∀ 𝑡𝑢 ∈ 𝒫 ( 𝑋𝑡 ) ∀ 𝑣 ∈ 𝒫 ( 𝑋𝑡 ) ( ( ( 𝑢𝐾𝑣𝐾 ) ∧ 𝑢 ⊆ ( 𝑁 ‘ ( 𝑣𝑡 ) ) ∧ ( 𝑢𝑡 ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑣 ( 𝑢𝑖 ∧ ( 𝑖𝑡 ) ∈ 𝐼 ) ) )
Assertion mreexexlemd ( 𝜑 → ∃ 𝑗 ∈ 𝒫 𝐺 ( 𝐹𝑗 ∧ ( 𝑗𝐻 ) ∈ 𝐼 ) )

Proof

Step Hyp Ref Expression
1 mreexexlemd.1 ( 𝜑𝑋𝐽 )
2 mreexexlemd.2 ( 𝜑𝐹 ⊆ ( 𝑋𝐻 ) )
3 mreexexlemd.3 ( 𝜑𝐺 ⊆ ( 𝑋𝐻 ) )
4 mreexexlemd.4 ( 𝜑𝐹 ⊆ ( 𝑁 ‘ ( 𝐺𝐻 ) ) )
5 mreexexlemd.5 ( 𝜑 → ( 𝐹𝐻 ) ∈ 𝐼 )
6 mreexexlemd.6 ( 𝜑 → ( 𝐹𝐾𝐺𝐾 ) )
7 mreexexlemd.7 ( 𝜑 → ∀ 𝑡𝑢 ∈ 𝒫 ( 𝑋𝑡 ) ∀ 𝑣 ∈ 𝒫 ( 𝑋𝑡 ) ( ( ( 𝑢𝐾𝑣𝐾 ) ∧ 𝑢 ⊆ ( 𝑁 ‘ ( 𝑣𝑡 ) ) ∧ ( 𝑢𝑡 ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑣 ( 𝑢𝑖 ∧ ( 𝑖𝑡 ) ∈ 𝐼 ) ) )
8 simplr ( ( ( 𝑡 = 𝑢 = 𝑓 ) ∧ 𝑣 = 𝑔 ) → 𝑢 = 𝑓 )
9 8 breq1d ( ( ( 𝑡 = 𝑢 = 𝑓 ) ∧ 𝑣 = 𝑔 ) → ( 𝑢𝐾𝑓𝐾 ) )
10 simpr ( ( ( 𝑡 = 𝑢 = 𝑓 ) ∧ 𝑣 = 𝑔 ) → 𝑣 = 𝑔 )
11 10 breq1d ( ( ( 𝑡 = 𝑢 = 𝑓 ) ∧ 𝑣 = 𝑔 ) → ( 𝑣𝐾𝑔𝐾 ) )
12 9 11 orbi12d ( ( ( 𝑡 = 𝑢 = 𝑓 ) ∧ 𝑣 = 𝑔 ) → ( ( 𝑢𝐾𝑣𝐾 ) ↔ ( 𝑓𝐾𝑔𝐾 ) ) )
13 simpll ( ( ( 𝑡 = 𝑢 = 𝑓 ) ∧ 𝑣 = 𝑔 ) → 𝑡 = )
14 10 13 uneq12d ( ( ( 𝑡 = 𝑢 = 𝑓 ) ∧ 𝑣 = 𝑔 ) → ( 𝑣𝑡 ) = ( 𝑔 ) )
15 14 fveq2d ( ( ( 𝑡 = 𝑢 = 𝑓 ) ∧ 𝑣 = 𝑔 ) → ( 𝑁 ‘ ( 𝑣𝑡 ) ) = ( 𝑁 ‘ ( 𝑔 ) ) )
16 8 15 sseq12d ( ( ( 𝑡 = 𝑢 = 𝑓 ) ∧ 𝑣 = 𝑔 ) → ( 𝑢 ⊆ ( 𝑁 ‘ ( 𝑣𝑡 ) ) ↔ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ) ) ) )
17 8 13 uneq12d ( ( ( 𝑡 = 𝑢 = 𝑓 ) ∧ 𝑣 = 𝑔 ) → ( 𝑢𝑡 ) = ( 𝑓 ) )
18 17 eleq1d ( ( ( 𝑡 = 𝑢 = 𝑓 ) ∧ 𝑣 = 𝑔 ) → ( ( 𝑢𝑡 ) ∈ 𝐼 ↔ ( 𝑓 ) ∈ 𝐼 ) )
19 12 16 18 3anbi123d ( ( ( 𝑡 = 𝑢 = 𝑓 ) ∧ 𝑣 = 𝑔 ) → ( ( ( 𝑢𝐾𝑣𝐾 ) ∧ 𝑢 ⊆ ( 𝑁 ‘ ( 𝑣𝑡 ) ) ∧ ( 𝑢𝑡 ) ∈ 𝐼 ) ↔ ( ( 𝑓𝐾𝑔𝐾 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ) ) ∧ ( 𝑓 ) ∈ 𝐼 ) ) )
20 simpllr ( ( ( ( 𝑡 = 𝑢 = 𝑓 ) ∧ 𝑣 = 𝑔 ) ∧ 𝑖 = 𝑗 ) → 𝑢 = 𝑓 )
21 simpr ( ( ( ( 𝑡 = 𝑢 = 𝑓 ) ∧ 𝑣 = 𝑔 ) ∧ 𝑖 = 𝑗 ) → 𝑖 = 𝑗 )
22 20 21 breq12d ( ( ( ( 𝑡 = 𝑢 = 𝑓 ) ∧ 𝑣 = 𝑔 ) ∧ 𝑖 = 𝑗 ) → ( 𝑢𝑖𝑓𝑗 ) )
23 simplll ( ( ( ( 𝑡 = 𝑢 = 𝑓 ) ∧ 𝑣 = 𝑔 ) ∧ 𝑖 = 𝑗 ) → 𝑡 = )
24 21 23 uneq12d ( ( ( ( 𝑡 = 𝑢 = 𝑓 ) ∧ 𝑣 = 𝑔 ) ∧ 𝑖 = 𝑗 ) → ( 𝑖𝑡 ) = ( 𝑗 ) )
25 24 eleq1d ( ( ( ( 𝑡 = 𝑢 = 𝑓 ) ∧ 𝑣 = 𝑔 ) ∧ 𝑖 = 𝑗 ) → ( ( 𝑖𝑡 ) ∈ 𝐼 ↔ ( 𝑗 ) ∈ 𝐼 ) )
26 22 25 anbi12d ( ( ( ( 𝑡 = 𝑢 = 𝑓 ) ∧ 𝑣 = 𝑔 ) ∧ 𝑖 = 𝑗 ) → ( ( 𝑢𝑖 ∧ ( 𝑖𝑡 ) ∈ 𝐼 ) ↔ ( 𝑓𝑗 ∧ ( 𝑗 ) ∈ 𝐼 ) ) )
27 simplr ( ( ( ( 𝑡 = 𝑢 = 𝑓 ) ∧ 𝑣 = 𝑔 ) ∧ 𝑖 = 𝑗 ) → 𝑣 = 𝑔 )
28 27 pweqd ( ( ( ( 𝑡 = 𝑢 = 𝑓 ) ∧ 𝑣 = 𝑔 ) ∧ 𝑖 = 𝑗 ) → 𝒫 𝑣 = 𝒫 𝑔 )
29 26 28 cbvrexdva2 ( ( ( 𝑡 = 𝑢 = 𝑓 ) ∧ 𝑣 = 𝑔 ) → ( ∃ 𝑖 ∈ 𝒫 𝑣 ( 𝑢𝑖 ∧ ( 𝑖𝑡 ) ∈ 𝐼 ) ↔ ∃ 𝑗 ∈ 𝒫 𝑔 ( 𝑓𝑗 ∧ ( 𝑗 ) ∈ 𝐼 ) ) )
30 19 29 imbi12d ( ( ( 𝑡 = 𝑢 = 𝑓 ) ∧ 𝑣 = 𝑔 ) → ( ( ( ( 𝑢𝐾𝑣𝐾 ) ∧ 𝑢 ⊆ ( 𝑁 ‘ ( 𝑣𝑡 ) ) ∧ ( 𝑢𝑡 ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑣 ( 𝑢𝑖 ∧ ( 𝑖𝑡 ) ∈ 𝐼 ) ) ↔ ( ( ( 𝑓𝐾𝑔𝐾 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ) ) ∧ ( 𝑓 ) ∈ 𝐼 ) → ∃ 𝑗 ∈ 𝒫 𝑔 ( 𝑓𝑗 ∧ ( 𝑗 ) ∈ 𝐼 ) ) ) )
31 simpl ( ( 𝑡 = 𝑢 = 𝑓 ) → 𝑡 = )
32 31 difeq2d ( ( 𝑡 = 𝑢 = 𝑓 ) → ( 𝑋𝑡 ) = ( 𝑋 ) )
33 32 pweqd ( ( 𝑡 = 𝑢 = 𝑓 ) → 𝒫 ( 𝑋𝑡 ) = 𝒫 ( 𝑋 ) )
34 33 adantr ( ( ( 𝑡 = 𝑢 = 𝑓 ) ∧ 𝑣 = 𝑔 ) → 𝒫 ( 𝑋𝑡 ) = 𝒫 ( 𝑋 ) )
35 30 34 cbvraldva2 ( ( 𝑡 = 𝑢 = 𝑓 ) → ( ∀ 𝑣 ∈ 𝒫 ( 𝑋𝑡 ) ( ( ( 𝑢𝐾𝑣𝐾 ) ∧ 𝑢 ⊆ ( 𝑁 ‘ ( 𝑣𝑡 ) ) ∧ ( 𝑢𝑡 ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑣 ( 𝑢𝑖 ∧ ( 𝑖𝑡 ) ∈ 𝐼 ) ) ↔ ∀ 𝑔 ∈ 𝒫 ( 𝑋 ) ( ( ( 𝑓𝐾𝑔𝐾 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ) ) ∧ ( 𝑓 ) ∈ 𝐼 ) → ∃ 𝑗 ∈ 𝒫 𝑔 ( 𝑓𝑗 ∧ ( 𝑗 ) ∈ 𝐼 ) ) ) )
36 35 33 cbvraldva2 ( 𝑡 = → ( ∀ 𝑢 ∈ 𝒫 ( 𝑋𝑡 ) ∀ 𝑣 ∈ 𝒫 ( 𝑋𝑡 ) ( ( ( 𝑢𝐾𝑣𝐾 ) ∧ 𝑢 ⊆ ( 𝑁 ‘ ( 𝑣𝑡 ) ) ∧ ( 𝑢𝑡 ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑣 ( 𝑢𝑖 ∧ ( 𝑖𝑡 ) ∈ 𝐼 ) ) ↔ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ) ( ( ( 𝑓𝐾𝑔𝐾 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ) ) ∧ ( 𝑓 ) ∈ 𝐼 ) → ∃ 𝑗 ∈ 𝒫 𝑔 ( 𝑓𝑗 ∧ ( 𝑗 ) ∈ 𝐼 ) ) ) )
37 36 cbvalvw ( ∀ 𝑡𝑢 ∈ 𝒫 ( 𝑋𝑡 ) ∀ 𝑣 ∈ 𝒫 ( 𝑋𝑡 ) ( ( ( 𝑢𝐾𝑣𝐾 ) ∧ 𝑢 ⊆ ( 𝑁 ‘ ( 𝑣𝑡 ) ) ∧ ( 𝑢𝑡 ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑣 ( 𝑢𝑖 ∧ ( 𝑖𝑡 ) ∈ 𝐼 ) ) ↔ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ) ( ( ( 𝑓𝐾𝑔𝐾 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ) ) ∧ ( 𝑓 ) ∈ 𝐼 ) → ∃ 𝑗 ∈ 𝒫 𝑔 ( 𝑓𝑗 ∧ ( 𝑗 ) ∈ 𝐼 ) ) )
38 7 37 sylib ( 𝜑 → ∀ 𝑓 ∈ 𝒫 ( 𝑋 ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ) ( ( ( 𝑓𝐾𝑔𝐾 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ) ) ∧ ( 𝑓 ) ∈ 𝐼 ) → ∃ 𝑗 ∈ 𝒫 𝑔 ( 𝑓𝑗 ∧ ( 𝑗 ) ∈ 𝐼 ) ) )
39 ssun2 𝐻 ⊆ ( 𝐹𝐻 )
40 39 a1i ( 𝜑𝐻 ⊆ ( 𝐹𝐻 ) )
41 5 40 ssexd ( 𝜑𝐻 ∈ V )
42 1 difexd ( 𝜑 → ( 𝑋𝐻 ) ∈ V )
43 42 2 sselpwd ( 𝜑𝐹 ∈ 𝒫 ( 𝑋𝐻 ) )
44 43 adantr ( ( 𝜑 = 𝐻 ) → 𝐹 ∈ 𝒫 ( 𝑋𝐻 ) )
45 simpr ( ( 𝜑 = 𝐻 ) → = 𝐻 )
46 45 difeq2d ( ( 𝜑 = 𝐻 ) → ( 𝑋 ) = ( 𝑋𝐻 ) )
47 46 pweqd ( ( 𝜑 = 𝐻 ) → 𝒫 ( 𝑋 ) = 𝒫 ( 𝑋𝐻 ) )
48 44 47 eleqtrrd ( ( 𝜑 = 𝐻 ) → 𝐹 ∈ 𝒫 ( 𝑋 ) )
49 42 3 sselpwd ( 𝜑𝐺 ∈ 𝒫 ( 𝑋𝐻 ) )
50 49 ad2antrr ( ( ( 𝜑 = 𝐻 ) ∧ 𝑓 = 𝐹 ) → 𝐺 ∈ 𝒫 ( 𝑋𝐻 ) )
51 47 adantr ( ( ( 𝜑 = 𝐻 ) ∧ 𝑓 = 𝐹 ) → 𝒫 ( 𝑋 ) = 𝒫 ( 𝑋𝐻 ) )
52 50 51 eleqtrrd ( ( ( 𝜑 = 𝐻 ) ∧ 𝑓 = 𝐹 ) → 𝐺 ∈ 𝒫 ( 𝑋 ) )
53 simplr ( ( ( ( 𝜑 = 𝐻 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) → 𝑓 = 𝐹 )
54 53 breq1d ( ( ( ( 𝜑 = 𝐻 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) → ( 𝑓𝐾𝐹𝐾 ) )
55 simpr ( ( ( ( 𝜑 = 𝐻 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) → 𝑔 = 𝐺 )
56 55 breq1d ( ( ( ( 𝜑 = 𝐻 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) → ( 𝑔𝐾𝐺𝐾 ) )
57 54 56 orbi12d ( ( ( ( 𝜑 = 𝐻 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) → ( ( 𝑓𝐾𝑔𝐾 ) ↔ ( 𝐹𝐾𝐺𝐾 ) ) )
58 simpllr ( ( ( ( 𝜑 = 𝐻 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) → = 𝐻 )
59 55 58 uneq12d ( ( ( ( 𝜑 = 𝐻 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) → ( 𝑔 ) = ( 𝐺𝐻 ) )
60 59 fveq2d ( ( ( ( 𝜑 = 𝐻 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) → ( 𝑁 ‘ ( 𝑔 ) ) = ( 𝑁 ‘ ( 𝐺𝐻 ) ) )
61 53 60 sseq12d ( ( ( ( 𝜑 = 𝐻 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) → ( 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ) ) ↔ 𝐹 ⊆ ( 𝑁 ‘ ( 𝐺𝐻 ) ) ) )
62 53 58 uneq12d ( ( ( ( 𝜑 = 𝐻 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) → ( 𝑓 ) = ( 𝐹𝐻 ) )
63 62 eleq1d ( ( ( ( 𝜑 = 𝐻 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) → ( ( 𝑓 ) ∈ 𝐼 ↔ ( 𝐹𝐻 ) ∈ 𝐼 ) )
64 57 61 63 3anbi123d ( ( ( ( 𝜑 = 𝐻 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) → ( ( ( 𝑓𝐾𝑔𝐾 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ) ) ∧ ( 𝑓 ) ∈ 𝐼 ) ↔ ( ( 𝐹𝐾𝐺𝐾 ) ∧ 𝐹 ⊆ ( 𝑁 ‘ ( 𝐺𝐻 ) ) ∧ ( 𝐹𝐻 ) ∈ 𝐼 ) ) )
65 55 pweqd ( ( ( ( 𝜑 = 𝐻 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) → 𝒫 𝑔 = 𝒫 𝐺 )
66 53 breq1d ( ( ( ( 𝜑 = 𝐻 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) → ( 𝑓𝑗𝐹𝑗 ) )
67 58 uneq2d ( ( ( ( 𝜑 = 𝐻 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) → ( 𝑗 ) = ( 𝑗𝐻 ) )
68 67 eleq1d ( ( ( ( 𝜑 = 𝐻 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) → ( ( 𝑗 ) ∈ 𝐼 ↔ ( 𝑗𝐻 ) ∈ 𝐼 ) )
69 66 68 anbi12d ( ( ( ( 𝜑 = 𝐻 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) → ( ( 𝑓𝑗 ∧ ( 𝑗 ) ∈ 𝐼 ) ↔ ( 𝐹𝑗 ∧ ( 𝑗𝐻 ) ∈ 𝐼 ) ) )
70 65 69 rexeqbidv ( ( ( ( 𝜑 = 𝐻 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) → ( ∃ 𝑗 ∈ 𝒫 𝑔 ( 𝑓𝑗 ∧ ( 𝑗 ) ∈ 𝐼 ) ↔ ∃ 𝑗 ∈ 𝒫 𝐺 ( 𝐹𝑗 ∧ ( 𝑗𝐻 ) ∈ 𝐼 ) ) )
71 64 70 imbi12d ( ( ( ( 𝜑 = 𝐻 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) → ( ( ( ( 𝑓𝐾𝑔𝐾 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ) ) ∧ ( 𝑓 ) ∈ 𝐼 ) → ∃ 𝑗 ∈ 𝒫 𝑔 ( 𝑓𝑗 ∧ ( 𝑗 ) ∈ 𝐼 ) ) ↔ ( ( ( 𝐹𝐾𝐺𝐾 ) ∧ 𝐹 ⊆ ( 𝑁 ‘ ( 𝐺𝐻 ) ) ∧ ( 𝐹𝐻 ) ∈ 𝐼 ) → ∃ 𝑗 ∈ 𝒫 𝐺 ( 𝐹𝑗 ∧ ( 𝑗𝐻 ) ∈ 𝐼 ) ) ) )
72 52 71 rspcdv ( ( ( 𝜑 = 𝐻 ) ∧ 𝑓 = 𝐹 ) → ( ∀ 𝑔 ∈ 𝒫 ( 𝑋 ) ( ( ( 𝑓𝐾𝑔𝐾 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ) ) ∧ ( 𝑓 ) ∈ 𝐼 ) → ∃ 𝑗 ∈ 𝒫 𝑔 ( 𝑓𝑗 ∧ ( 𝑗 ) ∈ 𝐼 ) ) → ( ( ( 𝐹𝐾𝐺𝐾 ) ∧ 𝐹 ⊆ ( 𝑁 ‘ ( 𝐺𝐻 ) ) ∧ ( 𝐹𝐻 ) ∈ 𝐼 ) → ∃ 𝑗 ∈ 𝒫 𝐺 ( 𝐹𝑗 ∧ ( 𝑗𝐻 ) ∈ 𝐼 ) ) ) )
73 48 72 rspcimdv ( ( 𝜑 = 𝐻 ) → ( ∀ 𝑓 ∈ 𝒫 ( 𝑋 ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ) ( ( ( 𝑓𝐾𝑔𝐾 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ) ) ∧ ( 𝑓 ) ∈ 𝐼 ) → ∃ 𝑗 ∈ 𝒫 𝑔 ( 𝑓𝑗 ∧ ( 𝑗 ) ∈ 𝐼 ) ) → ( ( ( 𝐹𝐾𝐺𝐾 ) ∧ 𝐹 ⊆ ( 𝑁 ‘ ( 𝐺𝐻 ) ) ∧ ( 𝐹𝐻 ) ∈ 𝐼 ) → ∃ 𝑗 ∈ 𝒫 𝐺 ( 𝐹𝑗 ∧ ( 𝑗𝐻 ) ∈ 𝐼 ) ) ) )
74 41 73 spcimdv ( 𝜑 → ( ∀ 𝑓 ∈ 𝒫 ( 𝑋 ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ) ( ( ( 𝑓𝐾𝑔𝐾 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ) ) ∧ ( 𝑓 ) ∈ 𝐼 ) → ∃ 𝑗 ∈ 𝒫 𝑔 ( 𝑓𝑗 ∧ ( 𝑗 ) ∈ 𝐼 ) ) → ( ( ( 𝐹𝐾𝐺𝐾 ) ∧ 𝐹 ⊆ ( 𝑁 ‘ ( 𝐺𝐻 ) ) ∧ ( 𝐹𝐻 ) ∈ 𝐼 ) → ∃ 𝑗 ∈ 𝒫 𝐺 ( 𝐹𝑗 ∧ ( 𝑗𝐻 ) ∈ 𝐼 ) ) ) )
75 38 74 mpd ( 𝜑 → ( ( ( 𝐹𝐾𝐺𝐾 ) ∧ 𝐹 ⊆ ( 𝑁 ‘ ( 𝐺𝐻 ) ) ∧ ( 𝐹𝐻 ) ∈ 𝐼 ) → ∃ 𝑗 ∈ 𝒫 𝐺 ( 𝐹𝑗 ∧ ( 𝑗𝐻 ) ∈ 𝐼 ) ) )
76 6 4 5 75 mp3and ( 𝜑 → ∃ 𝑗 ∈ 𝒫 𝐺 ( 𝐹𝑗 ∧ ( 𝑗𝐻 ) ∈ 𝐼 ) )