Step |
Hyp |
Ref |
Expression |
1 |
|
mreexexlemd.1 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐽 ) |
2 |
|
mreexexlemd.2 |
⊢ ( 𝜑 → 𝐹 ⊆ ( 𝑋 ∖ 𝐻 ) ) |
3 |
|
mreexexlemd.3 |
⊢ ( 𝜑 → 𝐺 ⊆ ( 𝑋 ∖ 𝐻 ) ) |
4 |
|
mreexexlemd.4 |
⊢ ( 𝜑 → 𝐹 ⊆ ( 𝑁 ‘ ( 𝐺 ∪ 𝐻 ) ) ) |
5 |
|
mreexexlemd.5 |
⊢ ( 𝜑 → ( 𝐹 ∪ 𝐻 ) ∈ 𝐼 ) |
6 |
|
mreexexlemd.6 |
⊢ ( 𝜑 → ( 𝐹 ≈ 𝐾 ∨ 𝐺 ≈ 𝐾 ) ) |
7 |
|
mreexexlemd.7 |
⊢ ( 𝜑 → ∀ 𝑡 ∀ 𝑢 ∈ 𝒫 ( 𝑋 ∖ 𝑡 ) ∀ 𝑣 ∈ 𝒫 ( 𝑋 ∖ 𝑡 ) ( ( ( 𝑢 ≈ 𝐾 ∨ 𝑣 ≈ 𝐾 ) ∧ 𝑢 ⊆ ( 𝑁 ‘ ( 𝑣 ∪ 𝑡 ) ) ∧ ( 𝑢 ∪ 𝑡 ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑣 ( 𝑢 ≈ 𝑖 ∧ ( 𝑖 ∪ 𝑡 ) ∈ 𝐼 ) ) ) |
8 |
|
simplr |
⊢ ( ( ( 𝑡 = ℎ ∧ 𝑢 = 𝑓 ) ∧ 𝑣 = 𝑔 ) → 𝑢 = 𝑓 ) |
9 |
8
|
breq1d |
⊢ ( ( ( 𝑡 = ℎ ∧ 𝑢 = 𝑓 ) ∧ 𝑣 = 𝑔 ) → ( 𝑢 ≈ 𝐾 ↔ 𝑓 ≈ 𝐾 ) ) |
10 |
|
simpr |
⊢ ( ( ( 𝑡 = ℎ ∧ 𝑢 = 𝑓 ) ∧ 𝑣 = 𝑔 ) → 𝑣 = 𝑔 ) |
11 |
10
|
breq1d |
⊢ ( ( ( 𝑡 = ℎ ∧ 𝑢 = 𝑓 ) ∧ 𝑣 = 𝑔 ) → ( 𝑣 ≈ 𝐾 ↔ 𝑔 ≈ 𝐾 ) ) |
12 |
9 11
|
orbi12d |
⊢ ( ( ( 𝑡 = ℎ ∧ 𝑢 = 𝑓 ) ∧ 𝑣 = 𝑔 ) → ( ( 𝑢 ≈ 𝐾 ∨ 𝑣 ≈ 𝐾 ) ↔ ( 𝑓 ≈ 𝐾 ∨ 𝑔 ≈ 𝐾 ) ) ) |
13 |
|
simpll |
⊢ ( ( ( 𝑡 = ℎ ∧ 𝑢 = 𝑓 ) ∧ 𝑣 = 𝑔 ) → 𝑡 = ℎ ) |
14 |
10 13
|
uneq12d |
⊢ ( ( ( 𝑡 = ℎ ∧ 𝑢 = 𝑓 ) ∧ 𝑣 = 𝑔 ) → ( 𝑣 ∪ 𝑡 ) = ( 𝑔 ∪ ℎ ) ) |
15 |
14
|
fveq2d |
⊢ ( ( ( 𝑡 = ℎ ∧ 𝑢 = 𝑓 ) ∧ 𝑣 = 𝑔 ) → ( 𝑁 ‘ ( 𝑣 ∪ 𝑡 ) ) = ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ) |
16 |
8 15
|
sseq12d |
⊢ ( ( ( 𝑡 = ℎ ∧ 𝑢 = 𝑓 ) ∧ 𝑣 = 𝑔 ) → ( 𝑢 ⊆ ( 𝑁 ‘ ( 𝑣 ∪ 𝑡 ) ) ↔ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ) ) |
17 |
8 13
|
uneq12d |
⊢ ( ( ( 𝑡 = ℎ ∧ 𝑢 = 𝑓 ) ∧ 𝑣 = 𝑔 ) → ( 𝑢 ∪ 𝑡 ) = ( 𝑓 ∪ ℎ ) ) |
18 |
17
|
eleq1d |
⊢ ( ( ( 𝑡 = ℎ ∧ 𝑢 = 𝑓 ) ∧ 𝑣 = 𝑔 ) → ( ( 𝑢 ∪ 𝑡 ) ∈ 𝐼 ↔ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) ) |
19 |
12 16 18
|
3anbi123d |
⊢ ( ( ( 𝑡 = ℎ ∧ 𝑢 = 𝑓 ) ∧ 𝑣 = 𝑔 ) → ( ( ( 𝑢 ≈ 𝐾 ∨ 𝑣 ≈ 𝐾 ) ∧ 𝑢 ⊆ ( 𝑁 ‘ ( 𝑣 ∪ 𝑡 ) ) ∧ ( 𝑢 ∪ 𝑡 ) ∈ 𝐼 ) ↔ ( ( 𝑓 ≈ 𝐾 ∨ 𝑔 ≈ 𝐾 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) ) ) |
20 |
|
simpllr |
⊢ ( ( ( ( 𝑡 = ℎ ∧ 𝑢 = 𝑓 ) ∧ 𝑣 = 𝑔 ) ∧ 𝑖 = 𝑗 ) → 𝑢 = 𝑓 ) |
21 |
|
simpr |
⊢ ( ( ( ( 𝑡 = ℎ ∧ 𝑢 = 𝑓 ) ∧ 𝑣 = 𝑔 ) ∧ 𝑖 = 𝑗 ) → 𝑖 = 𝑗 ) |
22 |
20 21
|
breq12d |
⊢ ( ( ( ( 𝑡 = ℎ ∧ 𝑢 = 𝑓 ) ∧ 𝑣 = 𝑔 ) ∧ 𝑖 = 𝑗 ) → ( 𝑢 ≈ 𝑖 ↔ 𝑓 ≈ 𝑗 ) ) |
23 |
|
simplll |
⊢ ( ( ( ( 𝑡 = ℎ ∧ 𝑢 = 𝑓 ) ∧ 𝑣 = 𝑔 ) ∧ 𝑖 = 𝑗 ) → 𝑡 = ℎ ) |
24 |
21 23
|
uneq12d |
⊢ ( ( ( ( 𝑡 = ℎ ∧ 𝑢 = 𝑓 ) ∧ 𝑣 = 𝑔 ) ∧ 𝑖 = 𝑗 ) → ( 𝑖 ∪ 𝑡 ) = ( 𝑗 ∪ ℎ ) ) |
25 |
24
|
eleq1d |
⊢ ( ( ( ( 𝑡 = ℎ ∧ 𝑢 = 𝑓 ) ∧ 𝑣 = 𝑔 ) ∧ 𝑖 = 𝑗 ) → ( ( 𝑖 ∪ 𝑡 ) ∈ 𝐼 ↔ ( 𝑗 ∪ ℎ ) ∈ 𝐼 ) ) |
26 |
22 25
|
anbi12d |
⊢ ( ( ( ( 𝑡 = ℎ ∧ 𝑢 = 𝑓 ) ∧ 𝑣 = 𝑔 ) ∧ 𝑖 = 𝑗 ) → ( ( 𝑢 ≈ 𝑖 ∧ ( 𝑖 ∪ 𝑡 ) ∈ 𝐼 ) ↔ ( 𝑓 ≈ 𝑗 ∧ ( 𝑗 ∪ ℎ ) ∈ 𝐼 ) ) ) |
27 |
|
simplr |
⊢ ( ( ( ( 𝑡 = ℎ ∧ 𝑢 = 𝑓 ) ∧ 𝑣 = 𝑔 ) ∧ 𝑖 = 𝑗 ) → 𝑣 = 𝑔 ) |
28 |
27
|
pweqd |
⊢ ( ( ( ( 𝑡 = ℎ ∧ 𝑢 = 𝑓 ) ∧ 𝑣 = 𝑔 ) ∧ 𝑖 = 𝑗 ) → 𝒫 𝑣 = 𝒫 𝑔 ) |
29 |
26 28
|
cbvrexdva2 |
⊢ ( ( ( 𝑡 = ℎ ∧ 𝑢 = 𝑓 ) ∧ 𝑣 = 𝑔 ) → ( ∃ 𝑖 ∈ 𝒫 𝑣 ( 𝑢 ≈ 𝑖 ∧ ( 𝑖 ∪ 𝑡 ) ∈ 𝐼 ) ↔ ∃ 𝑗 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑗 ∧ ( 𝑗 ∪ ℎ ) ∈ 𝐼 ) ) ) |
30 |
19 29
|
imbi12d |
⊢ ( ( ( 𝑡 = ℎ ∧ 𝑢 = 𝑓 ) ∧ 𝑣 = 𝑔 ) → ( ( ( ( 𝑢 ≈ 𝐾 ∨ 𝑣 ≈ 𝐾 ) ∧ 𝑢 ⊆ ( 𝑁 ‘ ( 𝑣 ∪ 𝑡 ) ) ∧ ( 𝑢 ∪ 𝑡 ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑣 ( 𝑢 ≈ 𝑖 ∧ ( 𝑖 ∪ 𝑡 ) ∈ 𝐼 ) ) ↔ ( ( ( 𝑓 ≈ 𝐾 ∨ 𝑔 ≈ 𝐾 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑗 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑗 ∧ ( 𝑗 ∪ ℎ ) ∈ 𝐼 ) ) ) ) |
31 |
|
simpl |
⊢ ( ( 𝑡 = ℎ ∧ 𝑢 = 𝑓 ) → 𝑡 = ℎ ) |
32 |
31
|
difeq2d |
⊢ ( ( 𝑡 = ℎ ∧ 𝑢 = 𝑓 ) → ( 𝑋 ∖ 𝑡 ) = ( 𝑋 ∖ ℎ ) ) |
33 |
32
|
pweqd |
⊢ ( ( 𝑡 = ℎ ∧ 𝑢 = 𝑓 ) → 𝒫 ( 𝑋 ∖ 𝑡 ) = 𝒫 ( 𝑋 ∖ ℎ ) ) |
34 |
33
|
adantr |
⊢ ( ( ( 𝑡 = ℎ ∧ 𝑢 = 𝑓 ) ∧ 𝑣 = 𝑔 ) → 𝒫 ( 𝑋 ∖ 𝑡 ) = 𝒫 ( 𝑋 ∖ ℎ ) ) |
35 |
30 34
|
cbvraldva2 |
⊢ ( ( 𝑡 = ℎ ∧ 𝑢 = 𝑓 ) → ( ∀ 𝑣 ∈ 𝒫 ( 𝑋 ∖ 𝑡 ) ( ( ( 𝑢 ≈ 𝐾 ∨ 𝑣 ≈ 𝐾 ) ∧ 𝑢 ⊆ ( 𝑁 ‘ ( 𝑣 ∪ 𝑡 ) ) ∧ ( 𝑢 ∪ 𝑡 ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑣 ( 𝑢 ≈ 𝑖 ∧ ( 𝑖 ∪ 𝑡 ) ∈ 𝐼 ) ) ↔ ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝐾 ∨ 𝑔 ≈ 𝐾 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑗 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑗 ∧ ( 𝑗 ∪ ℎ ) ∈ 𝐼 ) ) ) ) |
36 |
35 33
|
cbvraldva2 |
⊢ ( 𝑡 = ℎ → ( ∀ 𝑢 ∈ 𝒫 ( 𝑋 ∖ 𝑡 ) ∀ 𝑣 ∈ 𝒫 ( 𝑋 ∖ 𝑡 ) ( ( ( 𝑢 ≈ 𝐾 ∨ 𝑣 ≈ 𝐾 ) ∧ 𝑢 ⊆ ( 𝑁 ‘ ( 𝑣 ∪ 𝑡 ) ) ∧ ( 𝑢 ∪ 𝑡 ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑣 ( 𝑢 ≈ 𝑖 ∧ ( 𝑖 ∪ 𝑡 ) ∈ 𝐼 ) ) ↔ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝐾 ∨ 𝑔 ≈ 𝐾 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑗 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑗 ∧ ( 𝑗 ∪ ℎ ) ∈ 𝐼 ) ) ) ) |
37 |
36
|
cbvalvw |
⊢ ( ∀ 𝑡 ∀ 𝑢 ∈ 𝒫 ( 𝑋 ∖ 𝑡 ) ∀ 𝑣 ∈ 𝒫 ( 𝑋 ∖ 𝑡 ) ( ( ( 𝑢 ≈ 𝐾 ∨ 𝑣 ≈ 𝐾 ) ∧ 𝑢 ⊆ ( 𝑁 ‘ ( 𝑣 ∪ 𝑡 ) ) ∧ ( 𝑢 ∪ 𝑡 ) ∈ 𝐼 ) → ∃ 𝑖 ∈ 𝒫 𝑣 ( 𝑢 ≈ 𝑖 ∧ ( 𝑖 ∪ 𝑡 ) ∈ 𝐼 ) ) ↔ ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝐾 ∨ 𝑔 ≈ 𝐾 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑗 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑗 ∧ ( 𝑗 ∪ ℎ ) ∈ 𝐼 ) ) ) |
38 |
7 37
|
sylib |
⊢ ( 𝜑 → ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝐾 ∨ 𝑔 ≈ 𝐾 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑗 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑗 ∧ ( 𝑗 ∪ ℎ ) ∈ 𝐼 ) ) ) |
39 |
|
ssun2 |
⊢ 𝐻 ⊆ ( 𝐹 ∪ 𝐻 ) |
40 |
39
|
a1i |
⊢ ( 𝜑 → 𝐻 ⊆ ( 𝐹 ∪ 𝐻 ) ) |
41 |
5 40
|
ssexd |
⊢ ( 𝜑 → 𝐻 ∈ V ) |
42 |
1
|
difexd |
⊢ ( 𝜑 → ( 𝑋 ∖ 𝐻 ) ∈ V ) |
43 |
42 2
|
sselpwd |
⊢ ( 𝜑 → 𝐹 ∈ 𝒫 ( 𝑋 ∖ 𝐻 ) ) |
44 |
43
|
adantr |
⊢ ( ( 𝜑 ∧ ℎ = 𝐻 ) → 𝐹 ∈ 𝒫 ( 𝑋 ∖ 𝐻 ) ) |
45 |
|
simpr |
⊢ ( ( 𝜑 ∧ ℎ = 𝐻 ) → ℎ = 𝐻 ) |
46 |
45
|
difeq2d |
⊢ ( ( 𝜑 ∧ ℎ = 𝐻 ) → ( 𝑋 ∖ ℎ ) = ( 𝑋 ∖ 𝐻 ) ) |
47 |
46
|
pweqd |
⊢ ( ( 𝜑 ∧ ℎ = 𝐻 ) → 𝒫 ( 𝑋 ∖ ℎ ) = 𝒫 ( 𝑋 ∖ 𝐻 ) ) |
48 |
44 47
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ ℎ = 𝐻 ) → 𝐹 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ) |
49 |
42 3
|
sselpwd |
⊢ ( 𝜑 → 𝐺 ∈ 𝒫 ( 𝑋 ∖ 𝐻 ) ) |
50 |
49
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ℎ = 𝐻 ) ∧ 𝑓 = 𝐹 ) → 𝐺 ∈ 𝒫 ( 𝑋 ∖ 𝐻 ) ) |
51 |
47
|
adantr |
⊢ ( ( ( 𝜑 ∧ ℎ = 𝐻 ) ∧ 𝑓 = 𝐹 ) → 𝒫 ( 𝑋 ∖ ℎ ) = 𝒫 ( 𝑋 ∖ 𝐻 ) ) |
52 |
50 51
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ ℎ = 𝐻 ) ∧ 𝑓 = 𝐹 ) → 𝐺 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ) |
53 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ ℎ = 𝐻 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) → 𝑓 = 𝐹 ) |
54 |
53
|
breq1d |
⊢ ( ( ( ( 𝜑 ∧ ℎ = 𝐻 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) → ( 𝑓 ≈ 𝐾 ↔ 𝐹 ≈ 𝐾 ) ) |
55 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ℎ = 𝐻 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) → 𝑔 = 𝐺 ) |
56 |
55
|
breq1d |
⊢ ( ( ( ( 𝜑 ∧ ℎ = 𝐻 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) → ( 𝑔 ≈ 𝐾 ↔ 𝐺 ≈ 𝐾 ) ) |
57 |
54 56
|
orbi12d |
⊢ ( ( ( ( 𝜑 ∧ ℎ = 𝐻 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) → ( ( 𝑓 ≈ 𝐾 ∨ 𝑔 ≈ 𝐾 ) ↔ ( 𝐹 ≈ 𝐾 ∨ 𝐺 ≈ 𝐾 ) ) ) |
58 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ ℎ = 𝐻 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) → ℎ = 𝐻 ) |
59 |
55 58
|
uneq12d |
⊢ ( ( ( ( 𝜑 ∧ ℎ = 𝐻 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) → ( 𝑔 ∪ ℎ ) = ( 𝐺 ∪ 𝐻 ) ) |
60 |
59
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ ℎ = 𝐻 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) → ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) = ( 𝑁 ‘ ( 𝐺 ∪ 𝐻 ) ) ) |
61 |
53 60
|
sseq12d |
⊢ ( ( ( ( 𝜑 ∧ ℎ = 𝐻 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) → ( 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ↔ 𝐹 ⊆ ( 𝑁 ‘ ( 𝐺 ∪ 𝐻 ) ) ) ) |
62 |
53 58
|
uneq12d |
⊢ ( ( ( ( 𝜑 ∧ ℎ = 𝐻 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) → ( 𝑓 ∪ ℎ ) = ( 𝐹 ∪ 𝐻 ) ) |
63 |
62
|
eleq1d |
⊢ ( ( ( ( 𝜑 ∧ ℎ = 𝐻 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) → ( ( 𝑓 ∪ ℎ ) ∈ 𝐼 ↔ ( 𝐹 ∪ 𝐻 ) ∈ 𝐼 ) ) |
64 |
57 61 63
|
3anbi123d |
⊢ ( ( ( ( 𝜑 ∧ ℎ = 𝐻 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) → ( ( ( 𝑓 ≈ 𝐾 ∨ 𝑔 ≈ 𝐾 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) ↔ ( ( 𝐹 ≈ 𝐾 ∨ 𝐺 ≈ 𝐾 ) ∧ 𝐹 ⊆ ( 𝑁 ‘ ( 𝐺 ∪ 𝐻 ) ) ∧ ( 𝐹 ∪ 𝐻 ) ∈ 𝐼 ) ) ) |
65 |
55
|
pweqd |
⊢ ( ( ( ( 𝜑 ∧ ℎ = 𝐻 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) → 𝒫 𝑔 = 𝒫 𝐺 ) |
66 |
53
|
breq1d |
⊢ ( ( ( ( 𝜑 ∧ ℎ = 𝐻 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) → ( 𝑓 ≈ 𝑗 ↔ 𝐹 ≈ 𝑗 ) ) |
67 |
58
|
uneq2d |
⊢ ( ( ( ( 𝜑 ∧ ℎ = 𝐻 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) → ( 𝑗 ∪ ℎ ) = ( 𝑗 ∪ 𝐻 ) ) |
68 |
67
|
eleq1d |
⊢ ( ( ( ( 𝜑 ∧ ℎ = 𝐻 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) → ( ( 𝑗 ∪ ℎ ) ∈ 𝐼 ↔ ( 𝑗 ∪ 𝐻 ) ∈ 𝐼 ) ) |
69 |
66 68
|
anbi12d |
⊢ ( ( ( ( 𝜑 ∧ ℎ = 𝐻 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) → ( ( 𝑓 ≈ 𝑗 ∧ ( 𝑗 ∪ ℎ ) ∈ 𝐼 ) ↔ ( 𝐹 ≈ 𝑗 ∧ ( 𝑗 ∪ 𝐻 ) ∈ 𝐼 ) ) ) |
70 |
65 69
|
rexeqbidv |
⊢ ( ( ( ( 𝜑 ∧ ℎ = 𝐻 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) → ( ∃ 𝑗 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑗 ∧ ( 𝑗 ∪ ℎ ) ∈ 𝐼 ) ↔ ∃ 𝑗 ∈ 𝒫 𝐺 ( 𝐹 ≈ 𝑗 ∧ ( 𝑗 ∪ 𝐻 ) ∈ 𝐼 ) ) ) |
71 |
64 70
|
imbi12d |
⊢ ( ( ( ( 𝜑 ∧ ℎ = 𝐻 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) → ( ( ( ( 𝑓 ≈ 𝐾 ∨ 𝑔 ≈ 𝐾 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑗 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑗 ∧ ( 𝑗 ∪ ℎ ) ∈ 𝐼 ) ) ↔ ( ( ( 𝐹 ≈ 𝐾 ∨ 𝐺 ≈ 𝐾 ) ∧ 𝐹 ⊆ ( 𝑁 ‘ ( 𝐺 ∪ 𝐻 ) ) ∧ ( 𝐹 ∪ 𝐻 ) ∈ 𝐼 ) → ∃ 𝑗 ∈ 𝒫 𝐺 ( 𝐹 ≈ 𝑗 ∧ ( 𝑗 ∪ 𝐻 ) ∈ 𝐼 ) ) ) ) |
72 |
52 71
|
rspcdv |
⊢ ( ( ( 𝜑 ∧ ℎ = 𝐻 ) ∧ 𝑓 = 𝐹 ) → ( ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝐾 ∨ 𝑔 ≈ 𝐾 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑗 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑗 ∧ ( 𝑗 ∪ ℎ ) ∈ 𝐼 ) ) → ( ( ( 𝐹 ≈ 𝐾 ∨ 𝐺 ≈ 𝐾 ) ∧ 𝐹 ⊆ ( 𝑁 ‘ ( 𝐺 ∪ 𝐻 ) ) ∧ ( 𝐹 ∪ 𝐻 ) ∈ 𝐼 ) → ∃ 𝑗 ∈ 𝒫 𝐺 ( 𝐹 ≈ 𝑗 ∧ ( 𝑗 ∪ 𝐻 ) ∈ 𝐼 ) ) ) ) |
73 |
48 72
|
rspcimdv |
⊢ ( ( 𝜑 ∧ ℎ = 𝐻 ) → ( ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝐾 ∨ 𝑔 ≈ 𝐾 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑗 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑗 ∧ ( 𝑗 ∪ ℎ ) ∈ 𝐼 ) ) → ( ( ( 𝐹 ≈ 𝐾 ∨ 𝐺 ≈ 𝐾 ) ∧ 𝐹 ⊆ ( 𝑁 ‘ ( 𝐺 ∪ 𝐻 ) ) ∧ ( 𝐹 ∪ 𝐻 ) ∈ 𝐼 ) → ∃ 𝑗 ∈ 𝒫 𝐺 ( 𝐹 ≈ 𝑗 ∧ ( 𝑗 ∪ 𝐻 ) ∈ 𝐼 ) ) ) ) |
74 |
41 73
|
spcimdv |
⊢ ( 𝜑 → ( ∀ ℎ ∀ 𝑓 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ∀ 𝑔 ∈ 𝒫 ( 𝑋 ∖ ℎ ) ( ( ( 𝑓 ≈ 𝐾 ∨ 𝑔 ≈ 𝐾 ) ∧ 𝑓 ⊆ ( 𝑁 ‘ ( 𝑔 ∪ ℎ ) ) ∧ ( 𝑓 ∪ ℎ ) ∈ 𝐼 ) → ∃ 𝑗 ∈ 𝒫 𝑔 ( 𝑓 ≈ 𝑗 ∧ ( 𝑗 ∪ ℎ ) ∈ 𝐼 ) ) → ( ( ( 𝐹 ≈ 𝐾 ∨ 𝐺 ≈ 𝐾 ) ∧ 𝐹 ⊆ ( 𝑁 ‘ ( 𝐺 ∪ 𝐻 ) ) ∧ ( 𝐹 ∪ 𝐻 ) ∈ 𝐼 ) → ∃ 𝑗 ∈ 𝒫 𝐺 ( 𝐹 ≈ 𝑗 ∧ ( 𝑗 ∪ 𝐻 ) ∈ 𝐼 ) ) ) ) |
75 |
38 74
|
mpd |
⊢ ( 𝜑 → ( ( ( 𝐹 ≈ 𝐾 ∨ 𝐺 ≈ 𝐾 ) ∧ 𝐹 ⊆ ( 𝑁 ‘ ( 𝐺 ∪ 𝐻 ) ) ∧ ( 𝐹 ∪ 𝐻 ) ∈ 𝐼 ) → ∃ 𝑗 ∈ 𝒫 𝐺 ( 𝐹 ≈ 𝑗 ∧ ( 𝑗 ∪ 𝐻 ) ∈ 𝐼 ) ) ) |
76 |
6 4 5 75
|
mp3and |
⊢ ( 𝜑 → ∃ 𝑗 ∈ 𝒫 𝐺 ( 𝐹 ≈ 𝑗 ∧ ( 𝑗 ∪ 𝐻 ) ∈ 𝐼 ) ) |