Step |
Hyp |
Ref |
Expression |
1 |
|
isnacs.f |
⊢ 𝐹 = ( mrCls ‘ 𝐶 ) |
2 |
1
|
mrcssid |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑔 ⊆ 𝑋 ) → 𝑔 ⊆ ( 𝐹 ‘ 𝑔 ) ) |
3 |
|
simpr |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑔 ⊆ ( 𝐹 ‘ 𝑔 ) ) → 𝑔 ⊆ ( 𝐹 ‘ 𝑔 ) ) |
4 |
1
|
mrcssv |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( 𝐹 ‘ 𝑔 ) ⊆ 𝑋 ) |
5 |
4
|
adantr |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑔 ⊆ ( 𝐹 ‘ 𝑔 ) ) → ( 𝐹 ‘ 𝑔 ) ⊆ 𝑋 ) |
6 |
3 5
|
sstrd |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑔 ⊆ ( 𝐹 ‘ 𝑔 ) ) → 𝑔 ⊆ 𝑋 ) |
7 |
2 6
|
impbida |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( 𝑔 ⊆ 𝑋 ↔ 𝑔 ⊆ ( 𝐹 ‘ 𝑔 ) ) ) |
8 |
|
vex |
⊢ 𝑔 ∈ V |
9 |
8
|
elpw |
⊢ ( 𝑔 ∈ 𝒫 𝑋 ↔ 𝑔 ⊆ 𝑋 ) |
10 |
8
|
elpw |
⊢ ( 𝑔 ∈ 𝒫 ( 𝐹 ‘ 𝑔 ) ↔ 𝑔 ⊆ ( 𝐹 ‘ 𝑔 ) ) |
11 |
7 9 10
|
3bitr4g |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( 𝑔 ∈ 𝒫 𝑋 ↔ 𝑔 ∈ 𝒫 ( 𝐹 ‘ 𝑔 ) ) ) |
12 |
11
|
anbi1d |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( ( 𝑔 ∈ 𝒫 𝑋 ∧ 𝑔 ∈ Fin ) ↔ ( 𝑔 ∈ 𝒫 ( 𝐹 ‘ 𝑔 ) ∧ 𝑔 ∈ Fin ) ) ) |
13 |
|
elin |
⊢ ( 𝑔 ∈ ( 𝒫 𝑋 ∩ Fin ) ↔ ( 𝑔 ∈ 𝒫 𝑋 ∧ 𝑔 ∈ Fin ) ) |
14 |
|
elin |
⊢ ( 𝑔 ∈ ( 𝒫 ( 𝐹 ‘ 𝑔 ) ∩ Fin ) ↔ ( 𝑔 ∈ 𝒫 ( 𝐹 ‘ 𝑔 ) ∧ 𝑔 ∈ Fin ) ) |
15 |
12 13 14
|
3bitr4g |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( 𝑔 ∈ ( 𝒫 𝑋 ∩ Fin ) ↔ 𝑔 ∈ ( 𝒫 ( 𝐹 ‘ 𝑔 ) ∩ Fin ) ) ) |
16 |
|
pweq |
⊢ ( 𝑆 = ( 𝐹 ‘ 𝑔 ) → 𝒫 𝑆 = 𝒫 ( 𝐹 ‘ 𝑔 ) ) |
17 |
16
|
ineq1d |
⊢ ( 𝑆 = ( 𝐹 ‘ 𝑔 ) → ( 𝒫 𝑆 ∩ Fin ) = ( 𝒫 ( 𝐹 ‘ 𝑔 ) ∩ Fin ) ) |
18 |
17
|
eleq2d |
⊢ ( 𝑆 = ( 𝐹 ‘ 𝑔 ) → ( 𝑔 ∈ ( 𝒫 𝑆 ∩ Fin ) ↔ 𝑔 ∈ ( 𝒫 ( 𝐹 ‘ 𝑔 ) ∩ Fin ) ) ) |
19 |
18
|
bibi2d |
⊢ ( 𝑆 = ( 𝐹 ‘ 𝑔 ) → ( ( 𝑔 ∈ ( 𝒫 𝑋 ∩ Fin ) ↔ 𝑔 ∈ ( 𝒫 𝑆 ∩ Fin ) ) ↔ ( 𝑔 ∈ ( 𝒫 𝑋 ∩ Fin ) ↔ 𝑔 ∈ ( 𝒫 ( 𝐹 ‘ 𝑔 ) ∩ Fin ) ) ) ) |
20 |
15 19
|
syl5ibrcom |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( 𝑆 = ( 𝐹 ‘ 𝑔 ) → ( 𝑔 ∈ ( 𝒫 𝑋 ∩ Fin ) ↔ 𝑔 ∈ ( 𝒫 𝑆 ∩ Fin ) ) ) ) |
21 |
20
|
pm5.32rd |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( ( 𝑔 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑆 = ( 𝐹 ‘ 𝑔 ) ) ↔ ( 𝑔 ∈ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑆 = ( 𝐹 ‘ 𝑔 ) ) ) ) |
22 |
21
|
rexbidv2 |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( ∃ 𝑔 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑆 = ( 𝐹 ‘ 𝑔 ) ↔ ∃ 𝑔 ∈ ( 𝒫 𝑆 ∩ Fin ) 𝑆 = ( 𝐹 ‘ 𝑔 ) ) ) |