Metamath Proof Explorer


Theorem mrefg2

Description: Slight variation on finite generation for closure systems. (Contributed by Stefan O'Rear, 4-Apr-2015)

Ref Expression
Hypothesis isnacs.f 𝐹 = ( mrCls ‘ 𝐶 )
Assertion mrefg2 ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( ∃ 𝑔 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑆 = ( 𝐹𝑔 ) ↔ ∃ 𝑔 ∈ ( 𝒫 𝑆 ∩ Fin ) 𝑆 = ( 𝐹𝑔 ) ) )

Proof

Step Hyp Ref Expression
1 isnacs.f 𝐹 = ( mrCls ‘ 𝐶 )
2 1 mrcssid ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑔𝑋 ) → 𝑔 ⊆ ( 𝐹𝑔 ) )
3 simpr ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑔 ⊆ ( 𝐹𝑔 ) ) → 𝑔 ⊆ ( 𝐹𝑔 ) )
4 1 mrcssv ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( 𝐹𝑔 ) ⊆ 𝑋 )
5 4 adantr ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑔 ⊆ ( 𝐹𝑔 ) ) → ( 𝐹𝑔 ) ⊆ 𝑋 )
6 3 5 sstrd ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑔 ⊆ ( 𝐹𝑔 ) ) → 𝑔𝑋 )
7 2 6 impbida ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( 𝑔𝑋𝑔 ⊆ ( 𝐹𝑔 ) ) )
8 vex 𝑔 ∈ V
9 8 elpw ( 𝑔 ∈ 𝒫 𝑋𝑔𝑋 )
10 8 elpw ( 𝑔 ∈ 𝒫 ( 𝐹𝑔 ) ↔ 𝑔 ⊆ ( 𝐹𝑔 ) )
11 7 9 10 3bitr4g ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( 𝑔 ∈ 𝒫 𝑋𝑔 ∈ 𝒫 ( 𝐹𝑔 ) ) )
12 11 anbi1d ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( ( 𝑔 ∈ 𝒫 𝑋𝑔 ∈ Fin ) ↔ ( 𝑔 ∈ 𝒫 ( 𝐹𝑔 ) ∧ 𝑔 ∈ Fin ) ) )
13 elin ( 𝑔 ∈ ( 𝒫 𝑋 ∩ Fin ) ↔ ( 𝑔 ∈ 𝒫 𝑋𝑔 ∈ Fin ) )
14 elin ( 𝑔 ∈ ( 𝒫 ( 𝐹𝑔 ) ∩ Fin ) ↔ ( 𝑔 ∈ 𝒫 ( 𝐹𝑔 ) ∧ 𝑔 ∈ Fin ) )
15 12 13 14 3bitr4g ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( 𝑔 ∈ ( 𝒫 𝑋 ∩ Fin ) ↔ 𝑔 ∈ ( 𝒫 ( 𝐹𝑔 ) ∩ Fin ) ) )
16 pweq ( 𝑆 = ( 𝐹𝑔 ) → 𝒫 𝑆 = 𝒫 ( 𝐹𝑔 ) )
17 16 ineq1d ( 𝑆 = ( 𝐹𝑔 ) → ( 𝒫 𝑆 ∩ Fin ) = ( 𝒫 ( 𝐹𝑔 ) ∩ Fin ) )
18 17 eleq2d ( 𝑆 = ( 𝐹𝑔 ) → ( 𝑔 ∈ ( 𝒫 𝑆 ∩ Fin ) ↔ 𝑔 ∈ ( 𝒫 ( 𝐹𝑔 ) ∩ Fin ) ) )
19 18 bibi2d ( 𝑆 = ( 𝐹𝑔 ) → ( ( 𝑔 ∈ ( 𝒫 𝑋 ∩ Fin ) ↔ 𝑔 ∈ ( 𝒫 𝑆 ∩ Fin ) ) ↔ ( 𝑔 ∈ ( 𝒫 𝑋 ∩ Fin ) ↔ 𝑔 ∈ ( 𝒫 ( 𝐹𝑔 ) ∩ Fin ) ) ) )
20 15 19 syl5ibrcom ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( 𝑆 = ( 𝐹𝑔 ) → ( 𝑔 ∈ ( 𝒫 𝑋 ∩ Fin ) ↔ 𝑔 ∈ ( 𝒫 𝑆 ∩ Fin ) ) ) )
21 20 pm5.32rd ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( ( 𝑔 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑆 = ( 𝐹𝑔 ) ) ↔ ( 𝑔 ∈ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑆 = ( 𝐹𝑔 ) ) ) )
22 21 rexbidv2 ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( ∃ 𝑔 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑆 = ( 𝐹𝑔 ) ↔ ∃ 𝑔 ∈ ( 𝒫 𝑆 ∩ Fin ) 𝑆 = ( 𝐹𝑔 ) ) )