| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isnacs.f | ⊢ 𝐹  =  ( mrCls ‘ 𝐶 ) | 
						
							| 2 | 1 | mrefg2 | ⊢ ( 𝐶  ∈  ( Moore ‘ 𝑋 )  →  ( ∃ 𝑔  ∈  ( 𝒫  𝑋  ∩  Fin ) 𝑆  =  ( 𝐹 ‘ 𝑔 )  ↔  ∃ 𝑔  ∈  ( 𝒫  𝑆  ∩  Fin ) 𝑆  =  ( 𝐹 ‘ 𝑔 ) ) ) | 
						
							| 3 | 2 | adantr | ⊢ ( ( 𝐶  ∈  ( Moore ‘ 𝑋 )  ∧  𝑆  ∈  𝐶 )  →  ( ∃ 𝑔  ∈  ( 𝒫  𝑋  ∩  Fin ) 𝑆  =  ( 𝐹 ‘ 𝑔 )  ↔  ∃ 𝑔  ∈  ( 𝒫  𝑆  ∩  Fin ) 𝑆  =  ( 𝐹 ‘ 𝑔 ) ) ) | 
						
							| 4 |  | eqss | ⊢ ( 𝑆  =  ( 𝐹 ‘ 𝑔 )  ↔  ( 𝑆  ⊆  ( 𝐹 ‘ 𝑔 )  ∧  ( 𝐹 ‘ 𝑔 )  ⊆  𝑆 ) ) | 
						
							| 5 |  | simpll | ⊢ ( ( ( 𝐶  ∈  ( Moore ‘ 𝑋 )  ∧  𝑆  ∈  𝐶 )  ∧  𝑔  ∈  ( 𝒫  𝑆  ∩  Fin ) )  →  𝐶  ∈  ( Moore ‘ 𝑋 ) ) | 
						
							| 6 |  | inss1 | ⊢ ( 𝒫  𝑆  ∩  Fin )  ⊆  𝒫  𝑆 | 
						
							| 7 | 6 | sseli | ⊢ ( 𝑔  ∈  ( 𝒫  𝑆  ∩  Fin )  →  𝑔  ∈  𝒫  𝑆 ) | 
						
							| 8 | 7 | elpwid | ⊢ ( 𝑔  ∈  ( 𝒫  𝑆  ∩  Fin )  →  𝑔  ⊆  𝑆 ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( ( 𝐶  ∈  ( Moore ‘ 𝑋 )  ∧  𝑆  ∈  𝐶 )  ∧  𝑔  ∈  ( 𝒫  𝑆  ∩  Fin ) )  →  𝑔  ⊆  𝑆 ) | 
						
							| 10 |  | simplr | ⊢ ( ( ( 𝐶  ∈  ( Moore ‘ 𝑋 )  ∧  𝑆  ∈  𝐶 )  ∧  𝑔  ∈  ( 𝒫  𝑆  ∩  Fin ) )  →  𝑆  ∈  𝐶 ) | 
						
							| 11 | 1 | mrcsscl | ⊢ ( ( 𝐶  ∈  ( Moore ‘ 𝑋 )  ∧  𝑔  ⊆  𝑆  ∧  𝑆  ∈  𝐶 )  →  ( 𝐹 ‘ 𝑔 )  ⊆  𝑆 ) | 
						
							| 12 | 5 9 10 11 | syl3anc | ⊢ ( ( ( 𝐶  ∈  ( Moore ‘ 𝑋 )  ∧  𝑆  ∈  𝐶 )  ∧  𝑔  ∈  ( 𝒫  𝑆  ∩  Fin ) )  →  ( 𝐹 ‘ 𝑔 )  ⊆  𝑆 ) | 
						
							| 13 | 12 | biantrud | ⊢ ( ( ( 𝐶  ∈  ( Moore ‘ 𝑋 )  ∧  𝑆  ∈  𝐶 )  ∧  𝑔  ∈  ( 𝒫  𝑆  ∩  Fin ) )  →  ( 𝑆  ⊆  ( 𝐹 ‘ 𝑔 )  ↔  ( 𝑆  ⊆  ( 𝐹 ‘ 𝑔 )  ∧  ( 𝐹 ‘ 𝑔 )  ⊆  𝑆 ) ) ) | 
						
							| 14 | 4 13 | bitr4id | ⊢ ( ( ( 𝐶  ∈  ( Moore ‘ 𝑋 )  ∧  𝑆  ∈  𝐶 )  ∧  𝑔  ∈  ( 𝒫  𝑆  ∩  Fin ) )  →  ( 𝑆  =  ( 𝐹 ‘ 𝑔 )  ↔  𝑆  ⊆  ( 𝐹 ‘ 𝑔 ) ) ) | 
						
							| 15 | 14 | rexbidva | ⊢ ( ( 𝐶  ∈  ( Moore ‘ 𝑋 )  ∧  𝑆  ∈  𝐶 )  →  ( ∃ 𝑔  ∈  ( 𝒫  𝑆  ∩  Fin ) 𝑆  =  ( 𝐹 ‘ 𝑔 )  ↔  ∃ 𝑔  ∈  ( 𝒫  𝑆  ∩  Fin ) 𝑆  ⊆  ( 𝐹 ‘ 𝑔 ) ) ) | 
						
							| 16 | 3 15 | bitrd | ⊢ ( ( 𝐶  ∈  ( Moore ‘ 𝑋 )  ∧  𝑆  ∈  𝐶 )  →  ( ∃ 𝑔  ∈  ( 𝒫  𝑋  ∩  Fin ) 𝑆  =  ( 𝐹 ‘ 𝑔 )  ↔  ∃ 𝑔  ∈  ( 𝒫  𝑆  ∩  Fin ) 𝑆  ⊆  ( 𝐹 ‘ 𝑔 ) ) ) |