Step |
Hyp |
Ref |
Expression |
1 |
|
dfiin2g |
⊢ ( ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 → ∩ 𝑦 ∈ 𝐼 𝑆 = ∩ { 𝑠 ∣ ∃ 𝑦 ∈ 𝐼 𝑠 = 𝑆 } ) |
2 |
1
|
3ad2ant3 |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐼 ≠ ∅ ∧ ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 ) → ∩ 𝑦 ∈ 𝐼 𝑆 = ∩ { 𝑠 ∣ ∃ 𝑦 ∈ 𝐼 𝑠 = 𝑆 } ) |
3 |
|
simp1 |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐼 ≠ ∅ ∧ ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 ) → 𝐶 ∈ ( Moore ‘ 𝑋 ) ) |
4 |
|
uniiunlem |
⊢ ( ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 → ( ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 ↔ { 𝑠 ∣ ∃ 𝑦 ∈ 𝐼 𝑠 = 𝑆 } ⊆ 𝐶 ) ) |
5 |
4
|
ibi |
⊢ ( ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 → { 𝑠 ∣ ∃ 𝑦 ∈ 𝐼 𝑠 = 𝑆 } ⊆ 𝐶 ) |
6 |
5
|
3ad2ant3 |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐼 ≠ ∅ ∧ ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 ) → { 𝑠 ∣ ∃ 𝑦 ∈ 𝐼 𝑠 = 𝑆 } ⊆ 𝐶 ) |
7 |
|
n0 |
⊢ ( 𝐼 ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ 𝐼 ) |
8 |
|
nfra1 |
⊢ Ⅎ 𝑦 ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 |
9 |
|
nfre1 |
⊢ Ⅎ 𝑦 ∃ 𝑦 ∈ 𝐼 𝑠 = 𝑆 |
10 |
9
|
nfab |
⊢ Ⅎ 𝑦 { 𝑠 ∣ ∃ 𝑦 ∈ 𝐼 𝑠 = 𝑆 } |
11 |
|
nfcv |
⊢ Ⅎ 𝑦 ∅ |
12 |
10 11
|
nfne |
⊢ Ⅎ 𝑦 { 𝑠 ∣ ∃ 𝑦 ∈ 𝐼 𝑠 = 𝑆 } ≠ ∅ |
13 |
8 12
|
nfim |
⊢ Ⅎ 𝑦 ( ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 → { 𝑠 ∣ ∃ 𝑦 ∈ 𝐼 𝑠 = 𝑆 } ≠ ∅ ) |
14 |
|
rsp |
⊢ ( ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 → ( 𝑦 ∈ 𝐼 → 𝑆 ∈ 𝐶 ) ) |
15 |
14
|
com12 |
⊢ ( 𝑦 ∈ 𝐼 → ( ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 → 𝑆 ∈ 𝐶 ) ) |
16 |
|
elisset |
⊢ ( 𝑆 ∈ 𝐶 → ∃ 𝑠 𝑠 = 𝑆 ) |
17 |
|
rspe |
⊢ ( ( 𝑦 ∈ 𝐼 ∧ ∃ 𝑠 𝑠 = 𝑆 ) → ∃ 𝑦 ∈ 𝐼 ∃ 𝑠 𝑠 = 𝑆 ) |
18 |
17
|
ex |
⊢ ( 𝑦 ∈ 𝐼 → ( ∃ 𝑠 𝑠 = 𝑆 → ∃ 𝑦 ∈ 𝐼 ∃ 𝑠 𝑠 = 𝑆 ) ) |
19 |
16 18
|
syl5 |
⊢ ( 𝑦 ∈ 𝐼 → ( 𝑆 ∈ 𝐶 → ∃ 𝑦 ∈ 𝐼 ∃ 𝑠 𝑠 = 𝑆 ) ) |
20 |
|
rexcom4 |
⊢ ( ∃ 𝑦 ∈ 𝐼 ∃ 𝑠 𝑠 = 𝑆 ↔ ∃ 𝑠 ∃ 𝑦 ∈ 𝐼 𝑠 = 𝑆 ) |
21 |
19 20
|
syl6ib |
⊢ ( 𝑦 ∈ 𝐼 → ( 𝑆 ∈ 𝐶 → ∃ 𝑠 ∃ 𝑦 ∈ 𝐼 𝑠 = 𝑆 ) ) |
22 |
15 21
|
syld |
⊢ ( 𝑦 ∈ 𝐼 → ( ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 → ∃ 𝑠 ∃ 𝑦 ∈ 𝐼 𝑠 = 𝑆 ) ) |
23 |
|
abn0 |
⊢ ( { 𝑠 ∣ ∃ 𝑦 ∈ 𝐼 𝑠 = 𝑆 } ≠ ∅ ↔ ∃ 𝑠 ∃ 𝑦 ∈ 𝐼 𝑠 = 𝑆 ) |
24 |
22 23
|
syl6ibr |
⊢ ( 𝑦 ∈ 𝐼 → ( ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 → { 𝑠 ∣ ∃ 𝑦 ∈ 𝐼 𝑠 = 𝑆 } ≠ ∅ ) ) |
25 |
13 24
|
exlimi |
⊢ ( ∃ 𝑦 𝑦 ∈ 𝐼 → ( ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 → { 𝑠 ∣ ∃ 𝑦 ∈ 𝐼 𝑠 = 𝑆 } ≠ ∅ ) ) |
26 |
7 25
|
sylbi |
⊢ ( 𝐼 ≠ ∅ → ( ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 → { 𝑠 ∣ ∃ 𝑦 ∈ 𝐼 𝑠 = 𝑆 } ≠ ∅ ) ) |
27 |
26
|
imp |
⊢ ( ( 𝐼 ≠ ∅ ∧ ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 ) → { 𝑠 ∣ ∃ 𝑦 ∈ 𝐼 𝑠 = 𝑆 } ≠ ∅ ) |
28 |
27
|
3adant1 |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐼 ≠ ∅ ∧ ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 ) → { 𝑠 ∣ ∃ 𝑦 ∈ 𝐼 𝑠 = 𝑆 } ≠ ∅ ) |
29 |
|
mreintcl |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ { 𝑠 ∣ ∃ 𝑦 ∈ 𝐼 𝑠 = 𝑆 } ⊆ 𝐶 ∧ { 𝑠 ∣ ∃ 𝑦 ∈ 𝐼 𝑠 = 𝑆 } ≠ ∅ ) → ∩ { 𝑠 ∣ ∃ 𝑦 ∈ 𝐼 𝑠 = 𝑆 } ∈ 𝐶 ) |
30 |
3 6 28 29
|
syl3anc |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐼 ≠ ∅ ∧ ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 ) → ∩ { 𝑠 ∣ ∃ 𝑦 ∈ 𝐼 𝑠 = 𝑆 } ∈ 𝐶 ) |
31 |
2 30
|
eqeltrd |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐼 ≠ ∅ ∧ ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 ) → ∩ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 ) |