Step |
Hyp |
Ref |
Expression |
1 |
|
intprg |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) → ∩ { 𝐴 , 𝐵 } = ( 𝐴 ∩ 𝐵 ) ) |
2 |
1
|
3adant1 |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) → ∩ { 𝐴 , 𝐵 } = ( 𝐴 ∩ 𝐵 ) ) |
3 |
|
simp1 |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) → 𝐶 ∈ ( Moore ‘ 𝑋 ) ) |
4 |
|
prssi |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) → { 𝐴 , 𝐵 } ⊆ 𝐶 ) |
5 |
4
|
3adant1 |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) → { 𝐴 , 𝐵 } ⊆ 𝐶 ) |
6 |
|
prnzg |
⊢ ( 𝐴 ∈ 𝐶 → { 𝐴 , 𝐵 } ≠ ∅ ) |
7 |
6
|
3ad2ant2 |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) → { 𝐴 , 𝐵 } ≠ ∅ ) |
8 |
|
mreintcl |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ { 𝐴 , 𝐵 } ⊆ 𝐶 ∧ { 𝐴 , 𝐵 } ≠ ∅ ) → ∩ { 𝐴 , 𝐵 } ∈ 𝐶 ) |
9 |
3 5 7 8
|
syl3anc |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) → ∩ { 𝐴 , 𝐵 } ∈ 𝐶 ) |
10 |
2 9
|
eqeltrrd |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) → ( 𝐴 ∩ 𝐵 ) ∈ 𝐶 ) |