Step |
Hyp |
Ref |
Expression |
1 |
|
elpw2g |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( 𝑆 ∈ 𝒫 𝐶 ↔ 𝑆 ⊆ 𝐶 ) ) |
2 |
1
|
biimpar |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝐶 ) → 𝑆 ∈ 𝒫 𝐶 ) |
3 |
2
|
3adant3 |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅ ) → 𝑆 ∈ 𝒫 𝐶 ) |
4 |
|
ismre |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ↔ ( 𝐶 ⊆ 𝒫 𝑋 ∧ 𝑋 ∈ 𝐶 ∧ ∀ 𝑠 ∈ 𝒫 𝐶 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶 ) ) ) |
5 |
4
|
simp3bi |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ∀ 𝑠 ∈ 𝒫 𝐶 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶 ) ) |
6 |
5
|
3ad2ant1 |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅ ) → ∀ 𝑠 ∈ 𝒫 𝐶 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶 ) ) |
7 |
|
simp3 |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅ ) → 𝑆 ≠ ∅ ) |
8 |
|
neeq1 |
⊢ ( 𝑠 = 𝑆 → ( 𝑠 ≠ ∅ ↔ 𝑆 ≠ ∅ ) ) |
9 |
|
inteq |
⊢ ( 𝑠 = 𝑆 → ∩ 𝑠 = ∩ 𝑆 ) |
10 |
9
|
eleq1d |
⊢ ( 𝑠 = 𝑆 → ( ∩ 𝑠 ∈ 𝐶 ↔ ∩ 𝑆 ∈ 𝐶 ) ) |
11 |
8 10
|
imbi12d |
⊢ ( 𝑠 = 𝑆 → ( ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶 ) ↔ ( 𝑆 ≠ ∅ → ∩ 𝑆 ∈ 𝐶 ) ) ) |
12 |
11
|
rspcva |
⊢ ( ( 𝑆 ∈ 𝒫 𝐶 ∧ ∀ 𝑠 ∈ 𝒫 𝐶 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶 ) ) → ( 𝑆 ≠ ∅ → ∩ 𝑆 ∈ 𝐶 ) ) |
13 |
12
|
3impia |
⊢ ( ( 𝑆 ∈ 𝒫 𝐶 ∧ ∀ 𝑠 ∈ 𝒫 𝐶 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶 ) ∧ 𝑆 ≠ ∅ ) → ∩ 𝑆 ∈ 𝐶 ) |
14 |
3 6 7 13
|
syl3anc |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝐶 ∧ 𝑆 ≠ ∅ ) → ∩ 𝑆 ∈ 𝐶 ) |