Metamath Proof Explorer


Theorem mreintcl

Description: A nonempty collection of closed sets has a closed intersection. (Contributed by Stefan O'Rear, 30-Jan-2015)

Ref Expression
Assertion mreintcl ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑆𝐶𝑆 ≠ ∅ ) → 𝑆𝐶 )

Proof

Step Hyp Ref Expression
1 elpw2g ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( 𝑆 ∈ 𝒫 𝐶𝑆𝐶 ) )
2 1 biimpar ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑆𝐶 ) → 𝑆 ∈ 𝒫 𝐶 )
3 2 3adant3 ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑆𝐶𝑆 ≠ ∅ ) → 𝑆 ∈ 𝒫 𝐶 )
4 ismre ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ↔ ( 𝐶 ⊆ 𝒫 𝑋𝑋𝐶 ∧ ∀ 𝑠 ∈ 𝒫 𝐶 ( 𝑠 ≠ ∅ → 𝑠𝐶 ) ) )
5 4 simp3bi ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ∀ 𝑠 ∈ 𝒫 𝐶 ( 𝑠 ≠ ∅ → 𝑠𝐶 ) )
6 5 3ad2ant1 ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑆𝐶𝑆 ≠ ∅ ) → ∀ 𝑠 ∈ 𝒫 𝐶 ( 𝑠 ≠ ∅ → 𝑠𝐶 ) )
7 simp3 ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑆𝐶𝑆 ≠ ∅ ) → 𝑆 ≠ ∅ )
8 neeq1 ( 𝑠 = 𝑆 → ( 𝑠 ≠ ∅ ↔ 𝑆 ≠ ∅ ) )
9 inteq ( 𝑠 = 𝑆 𝑠 = 𝑆 )
10 9 eleq1d ( 𝑠 = 𝑆 → ( 𝑠𝐶 𝑆𝐶 ) )
11 8 10 imbi12d ( 𝑠 = 𝑆 → ( ( 𝑠 ≠ ∅ → 𝑠𝐶 ) ↔ ( 𝑆 ≠ ∅ → 𝑆𝐶 ) ) )
12 11 rspcva ( ( 𝑆 ∈ 𝒫 𝐶 ∧ ∀ 𝑠 ∈ 𝒫 𝐶 ( 𝑠 ≠ ∅ → 𝑠𝐶 ) ) → ( 𝑆 ≠ ∅ → 𝑆𝐶 ) )
13 12 3impia ( ( 𝑆 ∈ 𝒫 𝐶 ∧ ∀ 𝑠 ∈ 𝒫 𝐶 ( 𝑠 ≠ ∅ → 𝑠𝐶 ) ∧ 𝑆 ≠ ∅ ) → 𝑆𝐶 )
14 3 6 7 13 syl3anc ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑆𝐶𝑆 ≠ ∅ ) → 𝑆𝐶 )