Step |
Hyp |
Ref |
Expression |
1 |
|
mreclat.i |
⊢ 𝐼 = ( toInc ‘ 𝐶 ) |
2 |
|
mrelatglb.g |
⊢ 𝐺 = ( glb ‘ 𝐼 ) |
3 |
|
eqid |
⊢ ( le ‘ 𝐼 ) = ( le ‘ 𝐼 ) |
4 |
1
|
ipobas |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝐶 = ( Base ‘ 𝐼 ) ) |
5 |
4
|
3ad2ant1 |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅ ) → 𝐶 = ( Base ‘ 𝐼 ) ) |
6 |
2
|
a1i |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅ ) → 𝐺 = ( glb ‘ 𝐼 ) ) |
7 |
1
|
ipopos |
⊢ 𝐼 ∈ Poset |
8 |
7
|
a1i |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅ ) → 𝐼 ∈ Poset ) |
9 |
|
simp2 |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅ ) → 𝑈 ⊆ 𝐶 ) |
10 |
|
mreintcl |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅ ) → ∩ 𝑈 ∈ 𝐶 ) |
11 |
|
intss1 |
⊢ ( 𝑥 ∈ 𝑈 → ∩ 𝑈 ⊆ 𝑥 ) |
12 |
11
|
adantl |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅ ) ∧ 𝑥 ∈ 𝑈 ) → ∩ 𝑈 ⊆ 𝑥 ) |
13 |
|
simpl1 |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅ ) ∧ 𝑥 ∈ 𝑈 ) → 𝐶 ∈ ( Moore ‘ 𝑋 ) ) |
14 |
10
|
adantr |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅ ) ∧ 𝑥 ∈ 𝑈 ) → ∩ 𝑈 ∈ 𝐶 ) |
15 |
9
|
sselda |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅ ) ∧ 𝑥 ∈ 𝑈 ) → 𝑥 ∈ 𝐶 ) |
16 |
1 3
|
ipole |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∩ 𝑈 ∈ 𝐶 ∧ 𝑥 ∈ 𝐶 ) → ( ∩ 𝑈 ( le ‘ 𝐼 ) 𝑥 ↔ ∩ 𝑈 ⊆ 𝑥 ) ) |
17 |
13 14 15 16
|
syl3anc |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅ ) ∧ 𝑥 ∈ 𝑈 ) → ( ∩ 𝑈 ( le ‘ 𝐼 ) 𝑥 ↔ ∩ 𝑈 ⊆ 𝑥 ) ) |
18 |
12 17
|
mpbird |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅ ) ∧ 𝑥 ∈ 𝑈 ) → ∩ 𝑈 ( le ‘ 𝐼 ) 𝑥 ) |
19 |
|
simpll1 |
⊢ ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅ ) ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑥 ∈ 𝑈 ) → 𝐶 ∈ ( Moore ‘ 𝑋 ) ) |
20 |
|
simplr |
⊢ ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅ ) ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑥 ∈ 𝑈 ) → 𝑦 ∈ 𝐶 ) |
21 |
|
simpl2 |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅ ) ∧ 𝑦 ∈ 𝐶 ) → 𝑈 ⊆ 𝐶 ) |
22 |
21
|
sselda |
⊢ ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅ ) ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑥 ∈ 𝑈 ) → 𝑥 ∈ 𝐶 ) |
23 |
1 3
|
ipole |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑦 ∈ 𝐶 ∧ 𝑥 ∈ 𝐶 ) → ( 𝑦 ( le ‘ 𝐼 ) 𝑥 ↔ 𝑦 ⊆ 𝑥 ) ) |
24 |
19 20 22 23
|
syl3anc |
⊢ ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅ ) ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑥 ∈ 𝑈 ) → ( 𝑦 ( le ‘ 𝐼 ) 𝑥 ↔ 𝑦 ⊆ 𝑥 ) ) |
25 |
24
|
biimpd |
⊢ ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅ ) ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑥 ∈ 𝑈 ) → ( 𝑦 ( le ‘ 𝐼 ) 𝑥 → 𝑦 ⊆ 𝑥 ) ) |
26 |
25
|
ralimdva |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅ ) ∧ 𝑦 ∈ 𝐶 ) → ( ∀ 𝑥 ∈ 𝑈 𝑦 ( le ‘ 𝐼 ) 𝑥 → ∀ 𝑥 ∈ 𝑈 𝑦 ⊆ 𝑥 ) ) |
27 |
26
|
3impia |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅ ) ∧ 𝑦 ∈ 𝐶 ∧ ∀ 𝑥 ∈ 𝑈 𝑦 ( le ‘ 𝐼 ) 𝑥 ) → ∀ 𝑥 ∈ 𝑈 𝑦 ⊆ 𝑥 ) |
28 |
|
ssint |
⊢ ( 𝑦 ⊆ ∩ 𝑈 ↔ ∀ 𝑥 ∈ 𝑈 𝑦 ⊆ 𝑥 ) |
29 |
27 28
|
sylibr |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅ ) ∧ 𝑦 ∈ 𝐶 ∧ ∀ 𝑥 ∈ 𝑈 𝑦 ( le ‘ 𝐼 ) 𝑥 ) → 𝑦 ⊆ ∩ 𝑈 ) |
30 |
|
simp11 |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅ ) ∧ 𝑦 ∈ 𝐶 ∧ ∀ 𝑥 ∈ 𝑈 𝑦 ( le ‘ 𝐼 ) 𝑥 ) → 𝐶 ∈ ( Moore ‘ 𝑋 ) ) |
31 |
|
simp2 |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅ ) ∧ 𝑦 ∈ 𝐶 ∧ ∀ 𝑥 ∈ 𝑈 𝑦 ( le ‘ 𝐼 ) 𝑥 ) → 𝑦 ∈ 𝐶 ) |
32 |
10
|
3ad2ant1 |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅ ) ∧ 𝑦 ∈ 𝐶 ∧ ∀ 𝑥 ∈ 𝑈 𝑦 ( le ‘ 𝐼 ) 𝑥 ) → ∩ 𝑈 ∈ 𝐶 ) |
33 |
1 3
|
ipole |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑦 ∈ 𝐶 ∧ ∩ 𝑈 ∈ 𝐶 ) → ( 𝑦 ( le ‘ 𝐼 ) ∩ 𝑈 ↔ 𝑦 ⊆ ∩ 𝑈 ) ) |
34 |
30 31 32 33
|
syl3anc |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅ ) ∧ 𝑦 ∈ 𝐶 ∧ ∀ 𝑥 ∈ 𝑈 𝑦 ( le ‘ 𝐼 ) 𝑥 ) → ( 𝑦 ( le ‘ 𝐼 ) ∩ 𝑈 ↔ 𝑦 ⊆ ∩ 𝑈 ) ) |
35 |
29 34
|
mpbird |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅ ) ∧ 𝑦 ∈ 𝐶 ∧ ∀ 𝑥 ∈ 𝑈 𝑦 ( le ‘ 𝐼 ) 𝑥 ) → 𝑦 ( le ‘ 𝐼 ) ∩ 𝑈 ) |
36 |
3 5 6 8 9 10 18 35
|
posglbdg |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅ ) → ( 𝐺 ‘ 𝑈 ) = ∩ 𝑈 ) |