Metamath Proof Explorer


Theorem mrelatglb

Description: Greatest lower bounds in a Moore space are realized by intersections. (Contributed by Stefan O'Rear, 31-Jan-2015) See mrelatglbALT for an alternate proof.

Ref Expression
Hypotheses mreclat.i 𝐼 = ( toInc ‘ 𝐶 )
mrelatglb.g 𝐺 = ( glb ‘ 𝐼 )
Assertion mrelatglb ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈𝐶𝑈 ≠ ∅ ) → ( 𝐺𝑈 ) = 𝑈 )

Proof

Step Hyp Ref Expression
1 mreclat.i 𝐼 = ( toInc ‘ 𝐶 )
2 mrelatglb.g 𝐺 = ( glb ‘ 𝐼 )
3 eqid ( le ‘ 𝐼 ) = ( le ‘ 𝐼 )
4 1 ipobas ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝐶 = ( Base ‘ 𝐼 ) )
5 4 3ad2ant1 ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈𝐶𝑈 ≠ ∅ ) → 𝐶 = ( Base ‘ 𝐼 ) )
6 2 a1i ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈𝐶𝑈 ≠ ∅ ) → 𝐺 = ( glb ‘ 𝐼 ) )
7 1 ipopos 𝐼 ∈ Poset
8 7 a1i ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈𝐶𝑈 ≠ ∅ ) → 𝐼 ∈ Poset )
9 simp2 ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈𝐶𝑈 ≠ ∅ ) → 𝑈𝐶 )
10 mreintcl ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈𝐶𝑈 ≠ ∅ ) → 𝑈𝐶 )
11 intss1 ( 𝑥𝑈 𝑈𝑥 )
12 11 adantl ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈𝐶𝑈 ≠ ∅ ) ∧ 𝑥𝑈 ) → 𝑈𝑥 )
13 simpl1 ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈𝐶𝑈 ≠ ∅ ) ∧ 𝑥𝑈 ) → 𝐶 ∈ ( Moore ‘ 𝑋 ) )
14 10 adantr ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈𝐶𝑈 ≠ ∅ ) ∧ 𝑥𝑈 ) → 𝑈𝐶 )
15 9 sselda ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈𝐶𝑈 ≠ ∅ ) ∧ 𝑥𝑈 ) → 𝑥𝐶 )
16 1 3 ipole ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈𝐶𝑥𝐶 ) → ( 𝑈 ( le ‘ 𝐼 ) 𝑥 𝑈𝑥 ) )
17 13 14 15 16 syl3anc ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈𝐶𝑈 ≠ ∅ ) ∧ 𝑥𝑈 ) → ( 𝑈 ( le ‘ 𝐼 ) 𝑥 𝑈𝑥 ) )
18 12 17 mpbird ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈𝐶𝑈 ≠ ∅ ) ∧ 𝑥𝑈 ) → 𝑈 ( le ‘ 𝐼 ) 𝑥 )
19 simpll1 ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈𝐶𝑈 ≠ ∅ ) ∧ 𝑦𝐶 ) ∧ 𝑥𝑈 ) → 𝐶 ∈ ( Moore ‘ 𝑋 ) )
20 simplr ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈𝐶𝑈 ≠ ∅ ) ∧ 𝑦𝐶 ) ∧ 𝑥𝑈 ) → 𝑦𝐶 )
21 simpl2 ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈𝐶𝑈 ≠ ∅ ) ∧ 𝑦𝐶 ) → 𝑈𝐶 )
22 21 sselda ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈𝐶𝑈 ≠ ∅ ) ∧ 𝑦𝐶 ) ∧ 𝑥𝑈 ) → 𝑥𝐶 )
23 1 3 ipole ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑦𝐶𝑥𝐶 ) → ( 𝑦 ( le ‘ 𝐼 ) 𝑥𝑦𝑥 ) )
24 19 20 22 23 syl3anc ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈𝐶𝑈 ≠ ∅ ) ∧ 𝑦𝐶 ) ∧ 𝑥𝑈 ) → ( 𝑦 ( le ‘ 𝐼 ) 𝑥𝑦𝑥 ) )
25 24 biimpd ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈𝐶𝑈 ≠ ∅ ) ∧ 𝑦𝐶 ) ∧ 𝑥𝑈 ) → ( 𝑦 ( le ‘ 𝐼 ) 𝑥𝑦𝑥 ) )
26 25 ralimdva ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈𝐶𝑈 ≠ ∅ ) ∧ 𝑦𝐶 ) → ( ∀ 𝑥𝑈 𝑦 ( le ‘ 𝐼 ) 𝑥 → ∀ 𝑥𝑈 𝑦𝑥 ) )
27 26 3impia ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈𝐶𝑈 ≠ ∅ ) ∧ 𝑦𝐶 ∧ ∀ 𝑥𝑈 𝑦 ( le ‘ 𝐼 ) 𝑥 ) → ∀ 𝑥𝑈 𝑦𝑥 )
28 ssint ( 𝑦 𝑈 ↔ ∀ 𝑥𝑈 𝑦𝑥 )
29 27 28 sylibr ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈𝐶𝑈 ≠ ∅ ) ∧ 𝑦𝐶 ∧ ∀ 𝑥𝑈 𝑦 ( le ‘ 𝐼 ) 𝑥 ) → 𝑦 𝑈 )
30 simp11 ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈𝐶𝑈 ≠ ∅ ) ∧ 𝑦𝐶 ∧ ∀ 𝑥𝑈 𝑦 ( le ‘ 𝐼 ) 𝑥 ) → 𝐶 ∈ ( Moore ‘ 𝑋 ) )
31 simp2 ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈𝐶𝑈 ≠ ∅ ) ∧ 𝑦𝐶 ∧ ∀ 𝑥𝑈 𝑦 ( le ‘ 𝐼 ) 𝑥 ) → 𝑦𝐶 )
32 10 3ad2ant1 ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈𝐶𝑈 ≠ ∅ ) ∧ 𝑦𝐶 ∧ ∀ 𝑥𝑈 𝑦 ( le ‘ 𝐼 ) 𝑥 ) → 𝑈𝐶 )
33 1 3 ipole ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑦𝐶 𝑈𝐶 ) → ( 𝑦 ( le ‘ 𝐼 ) 𝑈𝑦 𝑈 ) )
34 30 31 32 33 syl3anc ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈𝐶𝑈 ≠ ∅ ) ∧ 𝑦𝐶 ∧ ∀ 𝑥𝑈 𝑦 ( le ‘ 𝐼 ) 𝑥 ) → ( 𝑦 ( le ‘ 𝐼 ) 𝑈𝑦 𝑈 ) )
35 29 34 mpbird ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈𝐶𝑈 ≠ ∅ ) ∧ 𝑦𝐶 ∧ ∀ 𝑥𝑈 𝑦 ( le ‘ 𝐼 ) 𝑥 ) → 𝑦 ( le ‘ 𝐼 ) 𝑈 )
36 3 5 6 8 9 10 18 35 posglbdg ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈𝐶𝑈 ≠ ∅ ) → ( 𝐺𝑈 ) = 𝑈 )