Metamath Proof Explorer


Theorem mrelatglbALT

Description: Greatest lower bounds in a Moore space are realized by intersections. (Contributed by Stefan O'Rear, 31-Jan-2015) (Proof shortened by Zhi Wang, 29-Sep-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses mreclatGOOD.i 𝐼 = ( toInc ‘ 𝐶 )
mrelatglbALT.g 𝐺 = ( glb ‘ 𝐼 )
Assertion mrelatglbALT ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈𝐶𝑈 ≠ ∅ ) → ( 𝐺𝑈 ) = 𝑈 )

Proof

Step Hyp Ref Expression
1 mreclatGOOD.i 𝐼 = ( toInc ‘ 𝐶 )
2 mrelatglbALT.g 𝐺 = ( glb ‘ 𝐼 )
3 simp1 ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈𝐶𝑈 ≠ ∅ ) → 𝐶 ∈ ( Moore ‘ 𝑋 ) )
4 simp2 ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈𝐶𝑈 ≠ ∅ ) → 𝑈𝐶 )
5 2 a1i ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈𝐶𝑈 ≠ ∅ ) → 𝐺 = ( glb ‘ 𝐼 ) )
6 mreintcl ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈𝐶𝑈 ≠ ∅ ) → 𝑈𝐶 )
7 unimax ( 𝑈𝐶 { 𝑥𝐶𝑥 𝑈 } = 𝑈 )
8 7 eqcomd ( 𝑈𝐶 𝑈 = { 𝑥𝐶𝑥 𝑈 } )
9 6 8 syl ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈𝐶𝑈 ≠ ∅ ) → 𝑈 = { 𝑥𝐶𝑥 𝑈 } )
10 1 3 4 5 9 6 ipoglb ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈𝐶𝑈 ≠ ∅ ) → ( 𝐺𝑈 ) = 𝑈 )