Step |
Hyp |
Ref |
Expression |
1 |
|
mreclatGOOD.i |
⊢ 𝐼 = ( toInc ‘ 𝐶 ) |
2 |
|
mrelatglbALT.g |
⊢ 𝐺 = ( glb ‘ 𝐼 ) |
3 |
|
simp1 |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅ ) → 𝐶 ∈ ( Moore ‘ 𝑋 ) ) |
4 |
|
simp2 |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅ ) → 𝑈 ⊆ 𝐶 ) |
5 |
2
|
a1i |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅ ) → 𝐺 = ( glb ‘ 𝐼 ) ) |
6 |
|
mreintcl |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅ ) → ∩ 𝑈 ∈ 𝐶 ) |
7 |
|
unimax |
⊢ ( ∩ 𝑈 ∈ 𝐶 → ∪ { 𝑥 ∈ 𝐶 ∣ 𝑥 ⊆ ∩ 𝑈 } = ∩ 𝑈 ) |
8 |
7
|
eqcomd |
⊢ ( ∩ 𝑈 ∈ 𝐶 → ∩ 𝑈 = ∪ { 𝑥 ∈ 𝐶 ∣ 𝑥 ⊆ ∩ 𝑈 } ) |
9 |
6 8
|
syl |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅ ) → ∩ 𝑈 = ∪ { 𝑥 ∈ 𝐶 ∣ 𝑥 ⊆ ∩ 𝑈 } ) |
10 |
1 3 4 5 9 6
|
ipoglb |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅ ) → ( 𝐺 ‘ 𝑈 ) = ∩ 𝑈 ) |