Metamath Proof Explorer


Theorem mrelatlubALT

Description: Least upper bounds in a Moore space are realized by the closure of the union. (Contributed by Stefan O'Rear, 31-Jan-2015) (Proof shortened by Zhi Wang, 29-Sep-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses mreclatGOOD.i 𝐼 = ( toInc ‘ 𝐶 )
mrelatlubALT.f 𝐹 = ( mrCls ‘ 𝐶 )
mrelatlubALT.l 𝐿 = ( lub ‘ 𝐼 )
Assertion mrelatlubALT ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈𝐶 ) → ( 𝐿𝑈 ) = ( 𝐹 𝑈 ) )

Proof

Step Hyp Ref Expression
1 mreclatGOOD.i 𝐼 = ( toInc ‘ 𝐶 )
2 mrelatlubALT.f 𝐹 = ( mrCls ‘ 𝐶 )
3 mrelatlubALT.l 𝐿 = ( lub ‘ 𝐼 )
4 simpl ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈𝐶 ) → 𝐶 ∈ ( Moore ‘ 𝑋 ) )
5 simpr ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈𝐶 ) → 𝑈𝐶 )
6 3 a1i ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈𝐶 ) → 𝐿 = ( lub ‘ 𝐼 ) )
7 mreuniss ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈𝐶 ) → 𝑈𝑋 )
8 2 mrcval ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈𝑋 ) → ( 𝐹 𝑈 ) = { 𝑥𝐶 𝑈𝑥 } )
9 7 8 syldan ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈𝐶 ) → ( 𝐹 𝑈 ) = { 𝑥𝐶 𝑈𝑥 } )
10 2 mrccl ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈𝑋 ) → ( 𝐹 𝑈 ) ∈ 𝐶 )
11 7 10 syldan ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈𝐶 ) → ( 𝐹 𝑈 ) ∈ 𝐶 )
12 1 4 5 6 9 11 ipolub ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈𝐶 ) → ( 𝐿𝑈 ) = ( 𝐹 𝑈 ) )