Step |
Hyp |
Ref |
Expression |
1 |
|
mreclatGOOD.i |
⊢ 𝐼 = ( toInc ‘ 𝐶 ) |
2 |
|
mrelatlubALT.f |
⊢ 𝐹 = ( mrCls ‘ 𝐶 ) |
3 |
|
mrelatlubALT.l |
⊢ 𝐿 = ( lub ‘ 𝐼 ) |
4 |
|
simpl |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) → 𝐶 ∈ ( Moore ‘ 𝑋 ) ) |
5 |
|
simpr |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) → 𝑈 ⊆ 𝐶 ) |
6 |
3
|
a1i |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) → 𝐿 = ( lub ‘ 𝐼 ) ) |
7 |
|
mreuniss |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) → ∪ 𝑈 ⊆ 𝑋 ) |
8 |
2
|
mrcval |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∪ 𝑈 ⊆ 𝑋 ) → ( 𝐹 ‘ ∪ 𝑈 ) = ∩ { 𝑥 ∈ 𝐶 ∣ ∪ 𝑈 ⊆ 𝑥 } ) |
9 |
7 8
|
syldan |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) → ( 𝐹 ‘ ∪ 𝑈 ) = ∩ { 𝑥 ∈ 𝐶 ∣ ∪ 𝑈 ⊆ 𝑥 } ) |
10 |
2
|
mrccl |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∪ 𝑈 ⊆ 𝑋 ) → ( 𝐹 ‘ ∪ 𝑈 ) ∈ 𝐶 ) |
11 |
7 10
|
syldan |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) → ( 𝐹 ‘ ∪ 𝑈 ) ∈ 𝐶 ) |
12 |
1 4 5 6 9 11
|
ipolub |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) → ( 𝐿 ‘ 𝑈 ) = ( 𝐹 ‘ ∪ 𝑈 ) ) |