Step |
Hyp |
Ref |
Expression |
1 |
|
mresspw |
⊢ ( 𝑎 ∈ ( Moore ‘ 𝑋 ) → 𝑎 ⊆ 𝒫 𝑋 ) |
2 |
|
velpw |
⊢ ( 𝑎 ∈ 𝒫 𝒫 𝑋 ↔ 𝑎 ⊆ 𝒫 𝑋 ) |
3 |
1 2
|
sylibr |
⊢ ( 𝑎 ∈ ( Moore ‘ 𝑋 ) → 𝑎 ∈ 𝒫 𝒫 𝑋 ) |
4 |
3
|
ssriv |
⊢ ( Moore ‘ 𝑋 ) ⊆ 𝒫 𝒫 𝑋 |
5 |
4
|
a1i |
⊢ ( 𝑋 ∈ 𝑉 → ( Moore ‘ 𝑋 ) ⊆ 𝒫 𝒫 𝑋 ) |
6 |
|
ssidd |
⊢ ( 𝑋 ∈ 𝑉 → 𝒫 𝑋 ⊆ 𝒫 𝑋 ) |
7 |
|
pwidg |
⊢ ( 𝑋 ∈ 𝑉 → 𝑋 ∈ 𝒫 𝑋 ) |
8 |
|
intssuni2 |
⊢ ( ( 𝑎 ⊆ 𝒫 𝑋 ∧ 𝑎 ≠ ∅ ) → ∩ 𝑎 ⊆ ∪ 𝒫 𝑋 ) |
9 |
8
|
3adant1 |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ 𝒫 𝑋 ∧ 𝑎 ≠ ∅ ) → ∩ 𝑎 ⊆ ∪ 𝒫 𝑋 ) |
10 |
|
unipw |
⊢ ∪ 𝒫 𝑋 = 𝑋 |
11 |
9 10
|
sseqtrdi |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ 𝒫 𝑋 ∧ 𝑎 ≠ ∅ ) → ∩ 𝑎 ⊆ 𝑋 ) |
12 |
|
elpw2g |
⊢ ( 𝑋 ∈ 𝑉 → ( ∩ 𝑎 ∈ 𝒫 𝑋 ↔ ∩ 𝑎 ⊆ 𝑋 ) ) |
13 |
12
|
3ad2ant1 |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ 𝒫 𝑋 ∧ 𝑎 ≠ ∅ ) → ( ∩ 𝑎 ∈ 𝒫 𝑋 ↔ ∩ 𝑎 ⊆ 𝑋 ) ) |
14 |
11 13
|
mpbird |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ 𝒫 𝑋 ∧ 𝑎 ≠ ∅ ) → ∩ 𝑎 ∈ 𝒫 𝑋 ) |
15 |
6 7 14
|
ismred |
⊢ ( 𝑋 ∈ 𝑉 → 𝒫 𝑋 ∈ ( Moore ‘ 𝑋 ) ) |
16 |
|
n0 |
⊢ ( 𝑎 ≠ ∅ ↔ ∃ 𝑏 𝑏 ∈ 𝑎 ) |
17 |
|
intss1 |
⊢ ( 𝑏 ∈ 𝑎 → ∩ 𝑎 ⊆ 𝑏 ) |
18 |
17
|
adantl |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ ( Moore ‘ 𝑋 ) ) ∧ 𝑏 ∈ 𝑎 ) → ∩ 𝑎 ⊆ 𝑏 ) |
19 |
|
simpr |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ ( Moore ‘ 𝑋 ) ) → 𝑎 ⊆ ( Moore ‘ 𝑋 ) ) |
20 |
19
|
sselda |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ ( Moore ‘ 𝑋 ) ) ∧ 𝑏 ∈ 𝑎 ) → 𝑏 ∈ ( Moore ‘ 𝑋 ) ) |
21 |
|
mresspw |
⊢ ( 𝑏 ∈ ( Moore ‘ 𝑋 ) → 𝑏 ⊆ 𝒫 𝑋 ) |
22 |
20 21
|
syl |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ ( Moore ‘ 𝑋 ) ) ∧ 𝑏 ∈ 𝑎 ) → 𝑏 ⊆ 𝒫 𝑋 ) |
23 |
18 22
|
sstrd |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ ( Moore ‘ 𝑋 ) ) ∧ 𝑏 ∈ 𝑎 ) → ∩ 𝑎 ⊆ 𝒫 𝑋 ) |
24 |
23
|
ex |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ ( Moore ‘ 𝑋 ) ) → ( 𝑏 ∈ 𝑎 → ∩ 𝑎 ⊆ 𝒫 𝑋 ) ) |
25 |
24
|
exlimdv |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ ( Moore ‘ 𝑋 ) ) → ( ∃ 𝑏 𝑏 ∈ 𝑎 → ∩ 𝑎 ⊆ 𝒫 𝑋 ) ) |
26 |
16 25
|
syl5bi |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ ( Moore ‘ 𝑋 ) ) → ( 𝑎 ≠ ∅ → ∩ 𝑎 ⊆ 𝒫 𝑋 ) ) |
27 |
26
|
3impia |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ ( Moore ‘ 𝑋 ) ∧ 𝑎 ≠ ∅ ) → ∩ 𝑎 ⊆ 𝒫 𝑋 ) |
28 |
|
simp2 |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ ( Moore ‘ 𝑋 ) ∧ 𝑎 ≠ ∅ ) → 𝑎 ⊆ ( Moore ‘ 𝑋 ) ) |
29 |
28
|
sselda |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ ( Moore ‘ 𝑋 ) ∧ 𝑎 ≠ ∅ ) ∧ 𝑏 ∈ 𝑎 ) → 𝑏 ∈ ( Moore ‘ 𝑋 ) ) |
30 |
|
mre1cl |
⊢ ( 𝑏 ∈ ( Moore ‘ 𝑋 ) → 𝑋 ∈ 𝑏 ) |
31 |
29 30
|
syl |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ ( Moore ‘ 𝑋 ) ∧ 𝑎 ≠ ∅ ) ∧ 𝑏 ∈ 𝑎 ) → 𝑋 ∈ 𝑏 ) |
32 |
31
|
ralrimiva |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ ( Moore ‘ 𝑋 ) ∧ 𝑎 ≠ ∅ ) → ∀ 𝑏 ∈ 𝑎 𝑋 ∈ 𝑏 ) |
33 |
|
elintg |
⊢ ( 𝑋 ∈ 𝑉 → ( 𝑋 ∈ ∩ 𝑎 ↔ ∀ 𝑏 ∈ 𝑎 𝑋 ∈ 𝑏 ) ) |
34 |
33
|
3ad2ant1 |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ ( Moore ‘ 𝑋 ) ∧ 𝑎 ≠ ∅ ) → ( 𝑋 ∈ ∩ 𝑎 ↔ ∀ 𝑏 ∈ 𝑎 𝑋 ∈ 𝑏 ) ) |
35 |
32 34
|
mpbird |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ ( Moore ‘ 𝑋 ) ∧ 𝑎 ≠ ∅ ) → 𝑋 ∈ ∩ 𝑎 ) |
36 |
|
simp12 |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ ( Moore ‘ 𝑋 ) ∧ 𝑎 ≠ ∅ ) ∧ 𝑏 ⊆ ∩ 𝑎 ∧ 𝑏 ≠ ∅ ) → 𝑎 ⊆ ( Moore ‘ 𝑋 ) ) |
37 |
36
|
sselda |
⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ ( Moore ‘ 𝑋 ) ∧ 𝑎 ≠ ∅ ) ∧ 𝑏 ⊆ ∩ 𝑎 ∧ 𝑏 ≠ ∅ ) ∧ 𝑐 ∈ 𝑎 ) → 𝑐 ∈ ( Moore ‘ 𝑋 ) ) |
38 |
|
simpl2 |
⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ ( Moore ‘ 𝑋 ) ∧ 𝑎 ≠ ∅ ) ∧ 𝑏 ⊆ ∩ 𝑎 ∧ 𝑏 ≠ ∅ ) ∧ 𝑐 ∈ 𝑎 ) → 𝑏 ⊆ ∩ 𝑎 ) |
39 |
|
intss1 |
⊢ ( 𝑐 ∈ 𝑎 → ∩ 𝑎 ⊆ 𝑐 ) |
40 |
39
|
adantl |
⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ ( Moore ‘ 𝑋 ) ∧ 𝑎 ≠ ∅ ) ∧ 𝑏 ⊆ ∩ 𝑎 ∧ 𝑏 ≠ ∅ ) ∧ 𝑐 ∈ 𝑎 ) → ∩ 𝑎 ⊆ 𝑐 ) |
41 |
38 40
|
sstrd |
⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ ( Moore ‘ 𝑋 ) ∧ 𝑎 ≠ ∅ ) ∧ 𝑏 ⊆ ∩ 𝑎 ∧ 𝑏 ≠ ∅ ) ∧ 𝑐 ∈ 𝑎 ) → 𝑏 ⊆ 𝑐 ) |
42 |
|
simpl3 |
⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ ( Moore ‘ 𝑋 ) ∧ 𝑎 ≠ ∅ ) ∧ 𝑏 ⊆ ∩ 𝑎 ∧ 𝑏 ≠ ∅ ) ∧ 𝑐 ∈ 𝑎 ) → 𝑏 ≠ ∅ ) |
43 |
|
mreintcl |
⊢ ( ( 𝑐 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑏 ⊆ 𝑐 ∧ 𝑏 ≠ ∅ ) → ∩ 𝑏 ∈ 𝑐 ) |
44 |
37 41 42 43
|
syl3anc |
⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ ( Moore ‘ 𝑋 ) ∧ 𝑎 ≠ ∅ ) ∧ 𝑏 ⊆ ∩ 𝑎 ∧ 𝑏 ≠ ∅ ) ∧ 𝑐 ∈ 𝑎 ) → ∩ 𝑏 ∈ 𝑐 ) |
45 |
44
|
ralrimiva |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ ( Moore ‘ 𝑋 ) ∧ 𝑎 ≠ ∅ ) ∧ 𝑏 ⊆ ∩ 𝑎 ∧ 𝑏 ≠ ∅ ) → ∀ 𝑐 ∈ 𝑎 ∩ 𝑏 ∈ 𝑐 ) |
46 |
|
intex |
⊢ ( 𝑏 ≠ ∅ ↔ ∩ 𝑏 ∈ V ) |
47 |
|
elintg |
⊢ ( ∩ 𝑏 ∈ V → ( ∩ 𝑏 ∈ ∩ 𝑎 ↔ ∀ 𝑐 ∈ 𝑎 ∩ 𝑏 ∈ 𝑐 ) ) |
48 |
46 47
|
sylbi |
⊢ ( 𝑏 ≠ ∅ → ( ∩ 𝑏 ∈ ∩ 𝑎 ↔ ∀ 𝑐 ∈ 𝑎 ∩ 𝑏 ∈ 𝑐 ) ) |
49 |
48
|
3ad2ant3 |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ ( Moore ‘ 𝑋 ) ∧ 𝑎 ≠ ∅ ) ∧ 𝑏 ⊆ ∩ 𝑎 ∧ 𝑏 ≠ ∅ ) → ( ∩ 𝑏 ∈ ∩ 𝑎 ↔ ∀ 𝑐 ∈ 𝑎 ∩ 𝑏 ∈ 𝑐 ) ) |
50 |
45 49
|
mpbird |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ ( Moore ‘ 𝑋 ) ∧ 𝑎 ≠ ∅ ) ∧ 𝑏 ⊆ ∩ 𝑎 ∧ 𝑏 ≠ ∅ ) → ∩ 𝑏 ∈ ∩ 𝑎 ) |
51 |
27 35 50
|
ismred |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑎 ⊆ ( Moore ‘ 𝑋 ) ∧ 𝑎 ≠ ∅ ) → ∩ 𝑎 ∈ ( Moore ‘ 𝑋 ) ) |
52 |
5 15 51
|
ismred |
⊢ ( 𝑋 ∈ 𝑉 → ( Moore ‘ 𝑋 ) ∈ ( Moore ‘ 𝒫 𝑋 ) ) |