| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mresspw | ⊢ ( 𝑎  ∈  ( Moore ‘ 𝑋 )  →  𝑎  ⊆  𝒫  𝑋 ) | 
						
							| 2 |  | velpw | ⊢ ( 𝑎  ∈  𝒫  𝒫  𝑋  ↔  𝑎  ⊆  𝒫  𝑋 ) | 
						
							| 3 | 1 2 | sylibr | ⊢ ( 𝑎  ∈  ( Moore ‘ 𝑋 )  →  𝑎  ∈  𝒫  𝒫  𝑋 ) | 
						
							| 4 | 3 | ssriv | ⊢ ( Moore ‘ 𝑋 )  ⊆  𝒫  𝒫  𝑋 | 
						
							| 5 | 4 | a1i | ⊢ ( 𝑋  ∈  𝑉  →  ( Moore ‘ 𝑋 )  ⊆  𝒫  𝒫  𝑋 ) | 
						
							| 6 |  | ssidd | ⊢ ( 𝑋  ∈  𝑉  →  𝒫  𝑋  ⊆  𝒫  𝑋 ) | 
						
							| 7 |  | pwidg | ⊢ ( 𝑋  ∈  𝑉  →  𝑋  ∈  𝒫  𝑋 ) | 
						
							| 8 |  | intssuni2 | ⊢ ( ( 𝑎  ⊆  𝒫  𝑋  ∧  𝑎  ≠  ∅ )  →  ∩  𝑎  ⊆  ∪  𝒫  𝑋 ) | 
						
							| 9 | 8 | 3adant1 | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑎  ⊆  𝒫  𝑋  ∧  𝑎  ≠  ∅ )  →  ∩  𝑎  ⊆  ∪  𝒫  𝑋 ) | 
						
							| 10 |  | unipw | ⊢ ∪  𝒫  𝑋  =  𝑋 | 
						
							| 11 | 9 10 | sseqtrdi | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑎  ⊆  𝒫  𝑋  ∧  𝑎  ≠  ∅ )  →  ∩  𝑎  ⊆  𝑋 ) | 
						
							| 12 |  | elpw2g | ⊢ ( 𝑋  ∈  𝑉  →  ( ∩  𝑎  ∈  𝒫  𝑋  ↔  ∩  𝑎  ⊆  𝑋 ) ) | 
						
							| 13 | 12 | 3ad2ant1 | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑎  ⊆  𝒫  𝑋  ∧  𝑎  ≠  ∅ )  →  ( ∩  𝑎  ∈  𝒫  𝑋  ↔  ∩  𝑎  ⊆  𝑋 ) ) | 
						
							| 14 | 11 13 | mpbird | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑎  ⊆  𝒫  𝑋  ∧  𝑎  ≠  ∅ )  →  ∩  𝑎  ∈  𝒫  𝑋 ) | 
						
							| 15 | 6 7 14 | ismred | ⊢ ( 𝑋  ∈  𝑉  →  𝒫  𝑋  ∈  ( Moore ‘ 𝑋 ) ) | 
						
							| 16 |  | n0 | ⊢ ( 𝑎  ≠  ∅  ↔  ∃ 𝑏 𝑏  ∈  𝑎 ) | 
						
							| 17 |  | intss1 | ⊢ ( 𝑏  ∈  𝑎  →  ∩  𝑎  ⊆  𝑏 ) | 
						
							| 18 | 17 | adantl | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑎  ⊆  ( Moore ‘ 𝑋 ) )  ∧  𝑏  ∈  𝑎 )  →  ∩  𝑎  ⊆  𝑏 ) | 
						
							| 19 |  | simpr | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑎  ⊆  ( Moore ‘ 𝑋 ) )  →  𝑎  ⊆  ( Moore ‘ 𝑋 ) ) | 
						
							| 20 | 19 | sselda | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑎  ⊆  ( Moore ‘ 𝑋 ) )  ∧  𝑏  ∈  𝑎 )  →  𝑏  ∈  ( Moore ‘ 𝑋 ) ) | 
						
							| 21 |  | mresspw | ⊢ ( 𝑏  ∈  ( Moore ‘ 𝑋 )  →  𝑏  ⊆  𝒫  𝑋 ) | 
						
							| 22 | 20 21 | syl | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑎  ⊆  ( Moore ‘ 𝑋 ) )  ∧  𝑏  ∈  𝑎 )  →  𝑏  ⊆  𝒫  𝑋 ) | 
						
							| 23 | 18 22 | sstrd | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑎  ⊆  ( Moore ‘ 𝑋 ) )  ∧  𝑏  ∈  𝑎 )  →  ∩  𝑎  ⊆  𝒫  𝑋 ) | 
						
							| 24 | 23 | ex | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑎  ⊆  ( Moore ‘ 𝑋 ) )  →  ( 𝑏  ∈  𝑎  →  ∩  𝑎  ⊆  𝒫  𝑋 ) ) | 
						
							| 25 | 24 | exlimdv | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑎  ⊆  ( Moore ‘ 𝑋 ) )  →  ( ∃ 𝑏 𝑏  ∈  𝑎  →  ∩  𝑎  ⊆  𝒫  𝑋 ) ) | 
						
							| 26 | 16 25 | biimtrid | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑎  ⊆  ( Moore ‘ 𝑋 ) )  →  ( 𝑎  ≠  ∅  →  ∩  𝑎  ⊆  𝒫  𝑋 ) ) | 
						
							| 27 | 26 | 3impia | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑎  ⊆  ( Moore ‘ 𝑋 )  ∧  𝑎  ≠  ∅ )  →  ∩  𝑎  ⊆  𝒫  𝑋 ) | 
						
							| 28 |  | simp2 | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑎  ⊆  ( Moore ‘ 𝑋 )  ∧  𝑎  ≠  ∅ )  →  𝑎  ⊆  ( Moore ‘ 𝑋 ) ) | 
						
							| 29 | 28 | sselda | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑎  ⊆  ( Moore ‘ 𝑋 )  ∧  𝑎  ≠  ∅ )  ∧  𝑏  ∈  𝑎 )  →  𝑏  ∈  ( Moore ‘ 𝑋 ) ) | 
						
							| 30 |  | mre1cl | ⊢ ( 𝑏  ∈  ( Moore ‘ 𝑋 )  →  𝑋  ∈  𝑏 ) | 
						
							| 31 | 29 30 | syl | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑎  ⊆  ( Moore ‘ 𝑋 )  ∧  𝑎  ≠  ∅ )  ∧  𝑏  ∈  𝑎 )  →  𝑋  ∈  𝑏 ) | 
						
							| 32 | 31 | ralrimiva | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑎  ⊆  ( Moore ‘ 𝑋 )  ∧  𝑎  ≠  ∅ )  →  ∀ 𝑏  ∈  𝑎 𝑋  ∈  𝑏 ) | 
						
							| 33 |  | elintg | ⊢ ( 𝑋  ∈  𝑉  →  ( 𝑋  ∈  ∩  𝑎  ↔  ∀ 𝑏  ∈  𝑎 𝑋  ∈  𝑏 ) ) | 
						
							| 34 | 33 | 3ad2ant1 | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑎  ⊆  ( Moore ‘ 𝑋 )  ∧  𝑎  ≠  ∅ )  →  ( 𝑋  ∈  ∩  𝑎  ↔  ∀ 𝑏  ∈  𝑎 𝑋  ∈  𝑏 ) ) | 
						
							| 35 | 32 34 | mpbird | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑎  ⊆  ( Moore ‘ 𝑋 )  ∧  𝑎  ≠  ∅ )  →  𝑋  ∈  ∩  𝑎 ) | 
						
							| 36 |  | simp12 | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑎  ⊆  ( Moore ‘ 𝑋 )  ∧  𝑎  ≠  ∅ )  ∧  𝑏  ⊆  ∩  𝑎  ∧  𝑏  ≠  ∅ )  →  𝑎  ⊆  ( Moore ‘ 𝑋 ) ) | 
						
							| 37 | 36 | sselda | ⊢ ( ( ( ( 𝑋  ∈  𝑉  ∧  𝑎  ⊆  ( Moore ‘ 𝑋 )  ∧  𝑎  ≠  ∅ )  ∧  𝑏  ⊆  ∩  𝑎  ∧  𝑏  ≠  ∅ )  ∧  𝑐  ∈  𝑎 )  →  𝑐  ∈  ( Moore ‘ 𝑋 ) ) | 
						
							| 38 |  | simpl2 | ⊢ ( ( ( ( 𝑋  ∈  𝑉  ∧  𝑎  ⊆  ( Moore ‘ 𝑋 )  ∧  𝑎  ≠  ∅ )  ∧  𝑏  ⊆  ∩  𝑎  ∧  𝑏  ≠  ∅ )  ∧  𝑐  ∈  𝑎 )  →  𝑏  ⊆  ∩  𝑎 ) | 
						
							| 39 |  | intss1 | ⊢ ( 𝑐  ∈  𝑎  →  ∩  𝑎  ⊆  𝑐 ) | 
						
							| 40 | 39 | adantl | ⊢ ( ( ( ( 𝑋  ∈  𝑉  ∧  𝑎  ⊆  ( Moore ‘ 𝑋 )  ∧  𝑎  ≠  ∅ )  ∧  𝑏  ⊆  ∩  𝑎  ∧  𝑏  ≠  ∅ )  ∧  𝑐  ∈  𝑎 )  →  ∩  𝑎  ⊆  𝑐 ) | 
						
							| 41 | 38 40 | sstrd | ⊢ ( ( ( ( 𝑋  ∈  𝑉  ∧  𝑎  ⊆  ( Moore ‘ 𝑋 )  ∧  𝑎  ≠  ∅ )  ∧  𝑏  ⊆  ∩  𝑎  ∧  𝑏  ≠  ∅ )  ∧  𝑐  ∈  𝑎 )  →  𝑏  ⊆  𝑐 ) | 
						
							| 42 |  | simpl3 | ⊢ ( ( ( ( 𝑋  ∈  𝑉  ∧  𝑎  ⊆  ( Moore ‘ 𝑋 )  ∧  𝑎  ≠  ∅ )  ∧  𝑏  ⊆  ∩  𝑎  ∧  𝑏  ≠  ∅ )  ∧  𝑐  ∈  𝑎 )  →  𝑏  ≠  ∅ ) | 
						
							| 43 |  | mreintcl | ⊢ ( ( 𝑐  ∈  ( Moore ‘ 𝑋 )  ∧  𝑏  ⊆  𝑐  ∧  𝑏  ≠  ∅ )  →  ∩  𝑏  ∈  𝑐 ) | 
						
							| 44 | 37 41 42 43 | syl3anc | ⊢ ( ( ( ( 𝑋  ∈  𝑉  ∧  𝑎  ⊆  ( Moore ‘ 𝑋 )  ∧  𝑎  ≠  ∅ )  ∧  𝑏  ⊆  ∩  𝑎  ∧  𝑏  ≠  ∅ )  ∧  𝑐  ∈  𝑎 )  →  ∩  𝑏  ∈  𝑐 ) | 
						
							| 45 | 44 | ralrimiva | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑎  ⊆  ( Moore ‘ 𝑋 )  ∧  𝑎  ≠  ∅ )  ∧  𝑏  ⊆  ∩  𝑎  ∧  𝑏  ≠  ∅ )  →  ∀ 𝑐  ∈  𝑎 ∩  𝑏  ∈  𝑐 ) | 
						
							| 46 |  | intex | ⊢ ( 𝑏  ≠  ∅  ↔  ∩  𝑏  ∈  V ) | 
						
							| 47 |  | elintg | ⊢ ( ∩  𝑏  ∈  V  →  ( ∩  𝑏  ∈  ∩  𝑎  ↔  ∀ 𝑐  ∈  𝑎 ∩  𝑏  ∈  𝑐 ) ) | 
						
							| 48 | 46 47 | sylbi | ⊢ ( 𝑏  ≠  ∅  →  ( ∩  𝑏  ∈  ∩  𝑎  ↔  ∀ 𝑐  ∈  𝑎 ∩  𝑏  ∈  𝑐 ) ) | 
						
							| 49 | 48 | 3ad2ant3 | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑎  ⊆  ( Moore ‘ 𝑋 )  ∧  𝑎  ≠  ∅ )  ∧  𝑏  ⊆  ∩  𝑎  ∧  𝑏  ≠  ∅ )  →  ( ∩  𝑏  ∈  ∩  𝑎  ↔  ∀ 𝑐  ∈  𝑎 ∩  𝑏  ∈  𝑐 ) ) | 
						
							| 50 | 45 49 | mpbird | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑎  ⊆  ( Moore ‘ 𝑋 )  ∧  𝑎  ≠  ∅ )  ∧  𝑏  ⊆  ∩  𝑎  ∧  𝑏  ≠  ∅ )  →  ∩  𝑏  ∈  ∩  𝑎 ) | 
						
							| 51 | 27 35 50 | ismred | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑎  ⊆  ( Moore ‘ 𝑋 )  ∧  𝑎  ≠  ∅ )  →  ∩  𝑎  ∈  ( Moore ‘ 𝑋 ) ) | 
						
							| 52 | 5 15 51 | ismred | ⊢ ( 𝑋  ∈  𝑉  →  ( Moore ‘ 𝑋 )  ∈  ( Moore ‘ 𝒫  𝑋 ) ) |